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1 Residential Microgrid Simulation Software 
 
The Residential Microgrid Simulation Software is a set of simulators and programs that allow for the electrical 
energy flow modeling of a distributed generation and storage-enabled residential microgrid. For this 
project, the microgrid is considered to have a solar generation array and lithium ion battery storage. The 
program consists of a Non-AI Residential Energy Simulator that creates the “base case” for all scenarios to be 
modeled and a Residential Microgrid AI EMS System which incorporates a Grid AI EMS and Residence AI 
EMS. A scenario could be a different character arrangement in a home, or a different number of households 
connected to the same microgrid. The goal of the system is to maximize the energy used from the solar 
generation and battery storage and minimize the energy used the main/utility-scale grid. This approach has 
benefits to the customer in the form of energy cost reduction and increase in comfort, as well as benefits to the 
grid operator in forms of preservation of grid components. Another critical beneficiary of such a system 
is the earth, as the shift towards decreased energy used from the grid translates to less CO2 emissions. 
 
This section details the working components of the Residential Microgrid Simulation Software. The four 
scenarios considered consist of a residence with a single occupant who works a normal 40-hour work week, 
a retired couple, a family of four with grade school-aged children, and a scenario where all three of the 
previous households are all connected to the same grid. This software is written in Python and 
incorporates the following libraries/APIs for machine learning (ML): 

• TensorFlow (backend for supervised and reinforcement learning libraries/APIs) 
• Sci-kit Learn (backend library for unsupervised learning elements) 
• Keras (API for supervised learning artificial neural networks – TensorFlow backend) 
• Stable Baselines-RL (API used for reinforcement learning agent creation and 

implementation – TensorFlow backend) 
• OpenAI-Gym (API for creating environments for reinforcement learning agents – 

integrates with Stable Baselines-RL). 
 
Using these libraries and APIs greatly reduced program development time and allowed for rapid prototyping. 
 
 

2 Non-AI Residential Energy Simulator 
 
Each model is originally simulated using a residential simulator that has no machine learning (ML) or AI 
components (NonAI_Sim_1_0_(Scenario#).py). This simulator simply creates the characters and records their 
behavior for one year. The simulator also models the energy usage for the given character behavior assuming 
no AI EMS, solar generation/battery storage, or dynamic TOU pricing. This one-year simulator runs for 
364 days or “episodes” with 96 increments or “time steps” for each episode. This translates to 15 simulated 
minutes per time step, with each episode representing a normal 24-hour day. There are 34944 timesteps for 
each year. For simplicity in 
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time array generation and seasonal considerations, the simulation year starts on December 21 and ends on 
December 20. 
 
The simulator creates the “base case” for each character scenario. The behaviors of the characters in this 
base case are used when simulating the AI-enabled residence in order for fair comparison of final results. All 
ML elements are trained based on the output from the initial base case created in the non-AI residential 
simulator. More detailed descriptions of key simulator components are given in the next sections. 
 
 

2.1 Time Vector Creation 
 
To ensure consistency between models and for efficient training of ML elements, a time stamp for each 
increment of the simulation must be created. A function was created to construct a timestamp for each 
increment in vector form. The result is an 87-element binary vector, which is divided up by length in the 
following four sections: hour of day (24), increment of hour (4), day of week (7), week of year (52). The 
program also converts this binary vector into a 4-element scalar vector. Both are used for ML element 
training and timing for the AI Residential EMS. 
 
 

2.2 Character Behavior Array Creation 
 
The ability to generate characters that behave in a somewhat random way was critical to success of this project. 
While behavior has aspects of randomness, there needs to be some consistency or pattern in behavior, as is 
the case in real-world day-to-day human behavior. Another important consideration is to model the character 
behavior only in a way that is seen from the perspective of the Residential AI EMS system. With these 
considerations, the Character Behavior Array (CBA) consists of five columns for each timestep: home or not 
home indication (1 = home, 0 = not home), temperature preference (scalar – degrees Fahrenheit), shower state 
(1 = shower in use, 0 = shower not in use), dishwasher state (1 = dishwasher on, 0 = dishwasher off), and 
laundry state (1 = laundry machine on, 0 = laundry machine off). Using these 5 indicators, the energy use 
for the four appliances can be modeled and/or controlled. 
 
CBAs were created for three different household scenarios: 1 – single adult who works a regular 9:00AM – 
5:00PM Monday-Friday workweek who is free on the weekends, 2 – retired couple that has no regular work 
schedule but similar seasonal patterns between simulation years, 3 – family of four with parents that work a 
regular work schedule with children in school. For each scenario behavior of the household residents was 
modeled in such a way that would be seen from the perspective of the Residential AI EMS. For simplicity, It 
was assumed that behavior was consistent on a week-to-week basis, meaning there were no major anomalous 
incidents such as an extended vacation or “sick days”. While in the real world these anomalies are present, it is 
assumed that a user-setting would exist that allowed residents to indicate when these periods are occurring. For 
the sake of this proof-of-concept project, it was decided that leaving out anomalies would be the best approach. 
In future models, the use on anomalies in character simulation will be explored. 
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For home or not home output, the leaving and arrival times of the residents were handled pseudo-randomly for 
Scenario 1, completely randomly for Scenario 2, and a combined approach was applied for Scenario 3. In 
Scenario 1, the weekday departure and arrival times were selected randomly each day but would fall within 
certain ranges. Departure times were between 7:00 – 8:45 AM and arrival between 4:00 – 6:45 PM on 
weeknights. On weekends, the departure and arrival times were completely randomized, by first giving a 
random time for first departure between 6:00 AM and 6:00 PM. From there the number of departures was 
randomized based on the time remaining in a day from the first departure time. This allowed from a range of 
departures and arrivals in a given day between 1 and 10 times. The character was always assumed to have 
arrived home before 11:45 PM each day on weekends. 
 
The home or not home array for Scenario 2 was constructed using the weekend approach in Scenario 1, 
but this was applied to everyday of the week for Scenario 2. Between years, the year 0 array was shuffled using 
a sliding window shuffler of 7-day length. This means the daily arrival- departure patterns initially created 
in the first year were preserved but shuffled to a different day in the 364-day simulation in later years. Using 
a sliding window of 7-days, ensure that similar coming and going patterns were maintained at similar times of 
the year as in the initial simulation. That was done to preserve the seasonal behavior between years that most 
households present, instead of completely random behavior. 
 
Scenario 3 used a combination of approaches from Scenarios 1 and 2. Because the household contained two 
characters that were school children, arrival and departure behavior needed to be different between school 
year and summer break times. Summer break was assumed to start on May 15 and end on August 15. During 
the school year, weekday departures and arrivals were applied similar to Scenario 1 with larger windows. 
Departure times could range between 6:00 and 9:45 AM and arrivals from 2:00 and 9:45PM. This was done 
to encapsulate the various extra- curricular that may exist for the children and also the fact that school 
children are often home before their parents are finished with work. During the school year, the weekends 
are handled in the same way as Scenario 1. During summer break, the arrival and departure behavior is 
created in the same manner as Scenario 2. This was done to simulate the random behavior/schedule of school 
children during summer break. The year-to-year behavior is not handled the same as Scenario 2, and 
completely new arrival and departure times are generated during summer break between years for Scenario 
3. 
 
The temperature preference arrays were constructed to account for differences in temperature preference 
throughout the day and also seasonally. The daily temperature preference changes were made to account for 
temperature when individuals are waking up in the morning, through the middle of the day, and when they 
go to bed, leading to three different temperature preferences throughout the day. The time at which the 
temperature preference would change between day sections was randomized each day within a range. Tables 
1 – 3 show the temperature preference for each Scenario for 1 year.  
 

Table 1: Annual Temperature Preferences for Scenario 1 
Season Wake Up Temp (° F) Mid-Day Temp (° F) Sleep Temp (° F) 
Winter 73 72 70 
Spring 72 70 69 

Summer 70 70 69 
Fall 72 71 70 
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Table 2: Annual Temperature Preferences for Scenario 2 
Season Wake Up Temp (° F) Mid-Day Temp (° F) Sleep Temp (° F) 
Winter 74 72 72 
Spring 73 71 70 

Summer 72 72 70 
Fall 73 71 70 

 
Table 3: Annual Temperature Preferences for Scenario 3 

Season Wake Up Temp (° F) Mid-Day Temp (° F) Sleep Temp (° F) 
Winter 73 72 70 
Spring 72 71 69 

Summer 72 70 69 
Fall 72 71 70 

 
The shower, dishwasher, and laundry state arrays were randomized based on the arrival departure 
behavior for each scenario. When scenarios exhibited the normal weekday work schedule, showers were 
always initiated at a random time before the first departure time. Shower duration was modeled as 2 timesteps 
(or 30 minutes). For multi-character households, the number of showers taken each day was randomized with 
1 shower a day minimum up to the total number of individuals in the household being the maximum number 
of showers each day. For non-regular weekday work schedules, showers can occur at any time throughout the 
day. 
 
The dishwasher and laundry times were handled similar to showers. Dishwasher run times were modeled at 6 
timesteps (90 minutes) and laundry at 8 timesteps (2 hours). It was assumed that the households had an all-
in-one washer and dryer laundry machine. Dishwasher and laundry run times were initiated at random times 
after the latest arrival times for scenarios that consisted of regular weekday workweek patterns. On the 
weekends, and on any day for Scenario 2 and Scenario 3 – Summer, dish and laundry could be initiated at 
any time. The number of times dish and laundry machines were ran in a given week was randomized based 
on the number of characters in each household. The random number of times each appliance was ran for 
each scenario fell within the following ranges: Scenario 1 – dishwasher(2 – 6), laundry (0 – 4); Scenario 2 - 
dishwasher(3 – 7), laundry (2 – 7); and Scenario 3 - dishwasher(2 – 7), laundry (2 – 7). 
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2.3 Import Weather and TOU Pricing 
 
Weather data for Chattanooga from December 2017 to December 2018 was used to model the outdoor 
temperature. Historical weather data for Chattanooga was found at: 
https://api.wunderground.com/history/airport/KCHA/1936/1/1/DailyHistory.html?&reqdb.zip=& 
reqdb.magic=&reqdb.wmo= 
(WeatherDataInterpolated_10-19-19.txt) Since only one year of data was collected, the weather between years 
was shuffled using the sliding window shuffling approach as explained before for Scenario 2 departure and 
arrival behavior. This approach was applied in order to conserve seasonal temperature behavior but present 
different temperatures each day between years. 
 
The TOU pricing guide was based on San Diego Gas and Electric utility TOU pricing in 2019 
(TOUData4Import_10-19-19.txt). This TOU pricing contains only a base price and peak pricing per kWh. Peak 
times are considered to be between 4:00 and 9:00 PM every day. This cost array was used to determine the 
base case annual energy cost for each scenario. Both the weather data and TOU pricing data imports are 
34944 elements in length, ensuring a value for each timestep in a 1 year simulation 
 
 

2.4 Energy Use Simulation 
 
Using the CBA, imported weather data, and imported TOU array, the energy usage and costing for each 
scenario was modeled. The simulator models the energy used by the dishwasher, laundry machine, hot 
water heater, HVAC, and general energy usage based on the inputs from the CBA. The energy used by each 
element is totaled each timestep and multiplied by the TOU cost per kWh for that timestep. At the end of the 
364-day simulation, energy usage and cost for each timestep are totaled to reveal the final annual energy 
usage and cost. The water and electrical power usage data for each element are given in Table 4. 
 

Table 4: Hot Water and Electrical Energy Usage Figures for Each Element Per Timestep 
Element Hot Water Usage (gal/15min) Energy Usage (kWh/15min) 
Shower 5 0 

Dishwasher 0.75 0.2055 
Laundry 0.5 2.06 

Hot Water Heater 3.75 1.14 
HVAC 0 0.81 

General Energy Use 0 0.15 (Away) 0.3 (Home) 
 
For shower, dishwasher and laundry, usages are only applied when a 1 value exists for those devices in 
CBA. The Hot Water Heater is turned on when the hot water level falls below a certain threshold. The hot 
water tank is assumed to be 80 gallons, and the threshold was set at 65 gallons. Water level is calculated 
based on the usages from shower, dishwasher, and laundry. General Energy Use is applied based on whether 
a character is home if the house is empty. When no characters are home, the base rate of 0.15 kWh/timestep is 
applied. When a character is home a general energy use of 0.3 kWh/timestep is applied. For HVAC, the 
system is on when the 
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internal temperature of the household falls outside of 1 degree from the temperature preference for that 
timestep based on the CBA. It is assumed that the HVAC can automatically switch from heating and cooling, 
and there is no limit to how many times it switches from heating to cooling for any given day. 
 
 

2.5 Saving and Reporting 
 
After the energy simulation is ran, the program outputs many key arrays that are used for training ML elements 
and/or modeling behavior in the AI-based simulations. A list of key output arrays is given below: 

• Full Character Behavior Array 
• Input vectors for temperature behavior neural network 
• Input vectors for temperature preference neural network 
• Input vectors for home/not home prediction neural network 
• Energy usage for each timestep 
• Dish state array 
• Laundry state array 
• Shower state array 
• Home/not home state array 
• Temperature preference array 
• Time vector (binary and scalar) 

 
In addition to saving key arrays in .txt format, the simulator also outputs a display of performance results that 
are used for model comparisons (Figure 1). 
 
 

Figure 1: Example of Scenario 3 Output Display for Non-AL Residential Simulator 
 

3 Residential Microgrid AI EMS System Overview 
 
(ResAI_GridEMS_RT_FullModel_Main_SingleHome.py, 
ResAI_GridEMS_RT_FullModel_Main_ThreeHome.py) 
The full Residential Microgrid AI EMS System includes a Residential AI EMS and a Grid AI EMS that exchange 
minimal information in order to maximize energy used from solar generation and/or battery storage and 
minimize energy used from the main/utility-scale grid, which is likely sourced from fossil fuel generation. 
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Figure 2 shows how the two AI EMS systems interact for a 1-home scenario. 
 

Figure 2: Grid AI EMS and Residential AI EMS Interaction 
 
As is the case with most utilities, the grid EMS only receives the total electric load from the residence. For 
simplicity this is converted to kWh in the simulation. The Grid AI EMS creates a dynamic TOU signal based 
on predicted load and simulated solar generation and battery storage. This TOU signal has three settings as 
shown in Figure 2. A low-cost signal (-1) is sent when there is expected to be solar generation in excess to 
what can be used by the residential load or to charge the grid battery. A high-cost signal (+1) is created when 
the predicted battery storage level is less than 50% and no solar generation is projected for that given timestep. 
The 50% was set in accordance with utility-scale lithium-ion battery storage operational guidelines, that 
state to limit dropping the charge state of the batteries below 50% as much as possible to conserve the battery 
lifespan. A neutral signal (0) is sent when neither of the previous two conditions are met for a given 
timestep. 
 
A more detailed layout of how the Grid AI EMS and Residential AI EMS function is displayed in Figure 3. 
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Figure 3: Residential Microgrid AI EMS System Block Diagram 

 
The full Residential Microgrid AI EMS System incorporates 9 separate ML elements from all three major ML 
categories (supervised, unsupervised, and reinforcement learning). The process shown in Figure 3 is repeated 
each timestep (15 minutes simulation time), which means the process is carried out 96 times each simulation 
day or episode. 
 
It is important to note that the TOU Signal RNN and the feedback loop within the Grid AI EMS is carried out 
for all remaining timesteps within an episode/day. This means that if the simulation is on the first timestep 
of an episode, the TOU Signal RNN and ensuing feedback loop will cycle 95 times to create a projected TOU 
Signal Schedule, which is what is sent to the Residence AI EMS. This projected TOU Signal Schedule 
gives the Residence AI EMS the TOU plan for the remainder of the day, which allow the system to plan 
appliance usage accordingly. The Home or Away RNN also cycles for all remaining timesteps in an episode 
to give a predicted home or away schedule for the remainder of the day. All of the elements in Figure 3 will 
be discussed in more detail in the next sections. 
 
The system in Figures 2 and 3 show the communication process for a single Residence AI EMS and the Grid 
AI EMS. For multi-home examples, the system is similar except the total load from all the homes are summed 
each timestep before they are read by the Grid AI EMS (Figure 4). 
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Figure 4: Three-Home Residential Microgrid AI EMS System 

 
In the multi-home scenario, the TOU signal is based on the load forecasts for the combined grid, so the Grid 
AI EMS does not know the energy usage behaviors of the individual homes. This means that if one of the 
homes is using energy inefficiently, then all of the homes could see negative effects from the TOU signal, 
and therefore total energy costs will be higher. This model could be optimized to account for individual home 
energy forecasting and pricing, but there was no time to implement such a system for this phase in the project. 
Simulation time would be exceedingly long for such a design, which must be considered in future work for 
this project. 
 
 

4 Residential AI EMS 
 
The Residential AI EMS uses many of the aspects to model energy usage as the Non-AI based simulator but 
incorporates seven ML elements to control when appliances are used and shape the state spaces for the 
Reinforcement Learning (RL) Agents that control each appliance. The major elements of the Residential 
AI EMS are listed below: 

• Home or Away Recurrent Neural Network (RNN) 
• Temperature Preference Fully Connected Neural Network (FC-NN) 
• Temperature Control FC-NN 
• Dishwasher RL Agent 
• Laundry RL Agent 
• Hot Water Heater (HWH) RL Agent 
• HVAC RL Agent 
• Residence Main Environment Simulator 
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The ML elements in the Residence AI EMS are all trained using the CBAs and other elements from the base case 
or non-AI simulator. 
 
 

4.1 State Space Support Neural Networks 
 
The neural networks (NN) in the Residence AI EMS used for state space support include the Home or Away 
RNN, Temperature Preference FC-NN, and Temperature Control FC-NN. This section explains the data 
processing, architecture, training, and operation for each NN. Each state space support NN was created using 
Keras API in Python with TensorFlow backend. 
 
The vectors used in the input class for each NN are taken from the non-AI simulator and are detailed in 
Table 5. All scalar elements are normalized using Equation 1 as below: 
 

𝑥!"#$%
& =

𝑥%& − 𝜇%
𝜎%

 

 
Table 5: Input Class Vector Contents for Each State Space Support NN 

Neural Network (Input Class Vector Size) Input Class Vector Contents (Type)(Size) 

Home or Away RNN (88) • Character home/not home (Binary)(1) 
• Time Vector (Binary)(87) 

Temperature Preference FC-NN (5) • Temperature Preference (Scalar)(1) 
• Time Vector (Scalar)(4) 

 
Temperature Control FC-NN (4) 

• HVAC On/Off (Binary)(1) 
• Heating or Cooling (Binary)(1) 
• Current Indoor Temp. (Scalar)(1) 
• Current Outdoor Temp. (Scalar)(1) 

 
The Home or Away RNN is intended to take in the previous 24 hours (96 timesteps) of home and not home 
status and predict the home or not home state for the remainder of the episode. For training purposes, the 
RNN need only to predict the home or away state for the 97th time slice, or the first time slice after the 96 
input time slices. Then in the RT simulation this output can be rotated around to the input side and the 
process repeated until the remainder of the time slices for a given episode have been analyzed. 
 
When considering the final use plan for the Home or Away RNN, the processing plan for the input class vectors 
can be shaped accordingly. The input class vector taken from the non-AI simulation is of shape (34944, 88). 
Given that the Home or Away RNN will contain 96 LSTM cells, each training case will have 96 timesteps 
of shape (1, 88). The labeled output for one training example will be the home or away state on the 97th time 
increment. Using the vector taken from the non- AI simulator, a loop can be initiated that takes a given row 
and pairs it with the home/not home state of the next timestep. This will yield a vector of size (34944, 89). 
Another loop can be initiated 
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that stacks the examples on top of one another in groups of 96 timesteps, resulting in a three- dimensional 
vector of shape (34848, 96, 89). This yields a vector consisting of 34848 training examples of 96 timesteps 
with input class vectors (88) and labeled output (1) to make 89 for a third dimension. This vector is then 
randomly shuffled along the first axis so there is no order or grouping for the training set. The labeled outputs 
are then taken from the main array to yield the input class training vector (X) and labeled output vector (Y) of 
shapes (34848, 96, 88) and (34848, 96, 1) respectively. 
 
After the input class vector data is processed, the data should be divided into training, validation, and testing 
categories. The NNs will only be trained using the data selected for training, with validation and testing 
sets serving as blind tests. For this project the input class vector training examples were divided in the 
following proportions: training (70%), validation (15%), and test (15%). Randomizing the order of the 
training examples before making the groupings into training, validation, and test ensures an even distribution 
of training examples from all points across the 1-year simulation. Having a random order of training examples 
also leads to a more robust NN. 
 
The RNN architecture used for the Home or Away RNN uses 96 consecutive Long-Short Term Memory 
(LSTM) cells, each with 64 neurons and Sigmoid output activation function (Goodfellow et. al, 2016). For 
training, binary cross-entropy is used as the loss function with Adam optimization for momentum control 
during back propagation (Goodfellow et. al, 2016) The Home or Away RNN is trained for 100 epochs. 
Accuracy results are based on the final LSTM cell output, or 97th timestep, which is close to 100% for all 
scenarios. During real-time simulation, output of the 97th output is taken and cycled back to the input for 
96th LSTM cell and paired with the time vector for that representative time slice. The rotation is repeated 
until the remaining number of timesteps in the current episode have an estimation of home or away state. 
For example, if the simulation is in the first timestep of an episode, the Home or Away RNN is cycled 95 
times to create a predicted home or away schedule for the remainder of the day. 
 
The Temperature Preference FC-NN is used to estimate the temperature preference within a given 
household at any given timestep. The input class vector will simply be the scalar time vector as the training 
inputs (X) and the temperature preference at each given timestep as the labeled output (Y). The input vector 
with the X and Y parts is of size (34944, 5). This vector is randomly shuffled along the first axis and 
separated into inputs and output vectors of size (34944, 4) and (34944, 1). The samples are divided into 
training, validation, and testing groups as defined in previous NNs. 
 
The Temperature Preference FC-NN contains 6 fully connected hidden layers that implement the RELU 
activation function (Goodfellow et. al, 2016). The hidden layer neuron arrangement is (64, 64, 48, 24, 16, 8) 
with a linear regression output layer, yielding a scalar output (preferred temperature in degrees Fahrenheit). 
A mean squared error loss function is implemented with Adam optimization for back propagation 
(Goodfellow et. al, 2016). This neural network was trained for 500 epochs with a batch size of 16. The 
resulting accuracy ranges from 98 – 99% between scenarios. During the real-time simulation, the time 
vectors for a given episode are ran all at once during the first time slice of that episode to generate a schedule 
for predicted temperature preference for that day. 
 
The Temperature Control FC-NN was created in order to predict the thermal behavior of the simulated 
home. The NN takes in the current indoor and outdoor temperatures along with the HVAC controls to 
predict what the temperature will be in the next timestep. This NN is used by the HVAC RL to determine 
what the temperature change will be for a given action, which include: no action (HVAC off), heating, or 
cooling. The input class vector is processed in a similar manner as the Home or Away RNN, in that the input 
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for a given training example has a labeled output that is the indoor temperature of the next timestep. A loop 
is implemented to paid the vector for a given timestep (X) with the indoor temperature of the next timestep 
(Y). This will result in an array of shape (34943, 5). The array is shuffled along the first axis and separated 
into input X (34943, 4) and Y (34943, 1). The training examples are then grouped into training, validation, and 
testing sets. 
 
The architecture, output activation, and back propagation parameters for the Temperature Control FC-NN 
are the same as the Temperature Preference FC-NN. The NN is trained over 600 epochs with batch size of 16. 
Accuracy for prediction is 99%+ for all scenarios. During the real- time simulation, this NN is ran each 
timestep using the current indoor and outdoor temperature conditions and all three possible HVAC states 
to yield a prediction for next step temperature given any possible action the HVAC RL agent can take. This 
information is given to the HVAC RL agent in the observation state space for use in deciding the next HVAC 
action. 
 
 

4.2 Appliance RL Agents 
 
RL agents were created to control the Dishwasher, Laundry, Hot Water Heater (HWH) and HVAC appliances. 
The agents were created in Python using the Stable Baselines-RL API, which uses TensorFlow backend. The 
RL methodology applied implements a Deep-Q Network (DQN) agent, which is a standard RL agent class 
within the Stable Baselines-RL API. 
 
Q learning is an off policy temporal difference (TD) reinforcement learning approach with Lambda value 0 
(Sutton and Barto, 2018). Q Learning approaches usually implement a non-linear function approximation 
technique, such as artificial neural networks, to link states to action Q values for policy formulation (Sutton 
and Barto, 2018). When the non-linear function approximation technique is a deep neural network, the 
approach is considered Deep Q Network (DQN) learning, which has recently led to technological 
breakthroughs in literature for solving RL problems in high order state spaces with large action spaces and 
sparse rewards (Mnih et. al, 2015). The DQN agent implemented for this project incorporates double Q 
Network (Hasselt et. al, 2015) with dueling agents (Wang et. al, 2015) and prioritized experience replay 
(Schaul, et. al, 2016). The non-linear function approximator is an FC-NN MLP with two hidden layers each 
consisting of 40 neurons. This was the only function approximator available for the DQN Agent class within 
the Stable Baselines-RL API that did not include the use of Convolutional Neural Networks (CNNs), which 
were not necessary for this project. If a custom DQN agent is to be made in the future, a more robust function 
approximator would likely be constructed. 
 
In order for an RL agent to function, it must have an environment to step through. This environment contains 
the state space, reward system, and environmental reset parameters necessary to train RL agents. The Stable 
Baselines-RL API requires that the custom RL agent environments be integrated with OpenAI-Gym, which is 
an API created by OpenAI that allows for easy construction for RL agent environments for rapid prototyping. 
OpenAI does contain several default environments, but none were a good match for this project. Custom 
environments were created for each appliance RL agent except for Laundry, as the Dishwasher and Laundry 
Agents function in the same way with different input data, so only one environment is needed for both 
Agents. RL Agent environments were created as Python Classes that integrate the Env object class from the 
OpenAI-Gym API. 
 
In order to integrate an RL agent environment class with OpenAI-Gym, the RL agent environment must contain 
four key methods: Step, Reset, Render, and Close. The Step method requires the input action and based on this 
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input assigns rewards based on the previous state and the current action. The state space is then updated and 
sent back to the agent in this method. The Reset method takes in the end of episode indicator as an input, if 
the end of episode indicator is positive then this method will reset the state space to reflect the starting state of 
an episode. The Render method provides the user a way to view the progress of the agent and also can be 
used for troubleshooting. The Close method is not necessary for all environments and was not used for the 
RL agent environments in this project. Figure 5 shows some pseudo code that depicts what a RL agent 
environment class would require including these methods. Custom RL agent environments can be 
integrated with OpenAI-gym API using the steps detailed at: 
https://github.com/openai/gym/blob/master/docs/creating-environments.md 
 

 
Figure 5: Pseudo Code Example for RL Agent Environment using OpenAI-Gym Standards 

 
The three environments created to train the appliance RL agents were all different due to the different 
inputs needed for the state space of each agent. The details of each appliance RL agent environment are given 
in Table 6. 
 

Table 6: Key Parameters for RL Agent Environments 
Element Dish/Laundry Env. HWH Env. HVAC Env. 

Action Space Binary[1 = on, 0 = off] Binary[1 = on, 0 = off] Discrete [1 = off, 2 = on: 
cooling, 3 = on: heating] 

SS Type Binary Vector Scalar Vector Scalar Vector 
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State Space 
Contents 

Steps until min cost, 
Steps until max cost, 
Appliance state, 
Appliance enable, 
Steps until enable 
expire 

Steps until min cost, 
Steps until max cost, 
Home or away, 
Appliance state, Water 
level, Steps until 
home 

Episode increment, Steps until 
min cost, Steps until max cost, 
Steps until home, Home or 
away, HVAC on, 
heating/cooling, Current indoor 
temp, Temp pref. when home, 
Outdoor temp, Next temp if 
Action = 1, Next temp if Action 
= 2, Next temp if Action = 3, 
Temperature difference from 
pref., HVAC on frequency in 
current episode, HVAC use 
below 
daily limit 

 
 
 
 

Step 
Method 
Contents 

• Rewards 
• Enable Update 
• Steps until 

Min/Max TOU 
Signal Update 

• End of Episode 
Ind. 

• State Space 
Update 

• Rewards 
• Steps until 

Min/Max TOU 
Signal Update 

• End of 
Episode Ind. 

• Steps until 
home method 

• Water tank 
level update 

• State Space 
Update 

• Rewards 
• Steps until Min/Max 

TOU Signal Update 
• End of Episode Ind. 
• Steps until home 

method 
• Temp. Pref. when 

home method 
• Indoor Temp. update 
• Temp. next step based on 

action method 
• State Space Update 

 
 
 
 

Reward 
Prioritization 

Highest Priorities: 
Appliance run only 
when enabled. 
Appliance run within 
20 hours of enable 
initiation. 

 
Lower Priorities: 
Appliance used during 
min cost signal and not 
during max cost 

Highest Priorities: 
Tank not empty when 
home. 
Appliance not run if 
tank full. 

 
Lower Priorities: 
Appliance used during 
min cost signal and not 
during max cost 

Highest Priorities: 
Temperature kept within +/- 1 ° 
F of preference when someone 
home. Appliance not used more 
in one day than daily allotted 
uses. 

 
Lower Priorities: Appliance 
used during min cost signal and 
not during max cost 

 
 
It is important to note that all RL agents incorporated rewards that stayed within +/- 1 in total value. This 
is to simplify the training within the embedded NN in the DQN agent and prevents vanishing or exploding 
gradients. For all agents, positive rewards were given when the appliance was used during a low TOU cost 
signal timestep. The largest rewards in magnitude were negative rewards if the agent took action that caused 
a violation in the highest priority designations for each agent. These violations yielded a reward of -1. The 
highest positive reward used was + 0.75 for all agents. For each environment, the episode length was 96, and 
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364 episodes were used, which equates to one year of non-AI simulation observation. Each training 
environment incorporated a shuffle feature in the Reset method, which shuffled the order of simulation 
inputs at the end of each training year, or every 364 episodes. This creates robustness in the training process 
and prevents bias from occurring. When shuffling each year is utilized, the agents are more adaptable to 
new scenarios, i.e. a new simulation year. 
 
The Dishwasher/Laundry RL Agent was designed to run the dishwasher/laundry machines during low cost 
TOU signal time intervals if the appliances have been enabled by a character. If a low cost TOU signal is 
not encountered within 20 hours of enable, the agent is trained to run the appliance in order to ensure the 
appliance is ran within 24 hours of enable. For training, the dish/laundry state vectors from the CBAs are 
used as the input for enable. These arrays are cleaned to ensure that only a single “1” occurs when the 
appliance is used, instead of 6 or 8 1s in a row that indicate the duration of when the appliance is on. A 
simulated TOU signal is created using the Solar/Battery Simulator described in later sections based on the 
energy usage behavior in the non-AI Simulation for each scenario. The simulated TOU signal and 
Dish/Laundry enable arrays are all that are required for inputs for training the Dish/Laundry RL Agents. These 
agents are trained for 175,000 timesteps or approximately 5 simulation years. 
 
The HWH RL Agent is designed to heat water during low TOU signal timesteps, but not at the tradeoff of 
the tank becoming empty while a character is home. Also, the agent is trained not to heat the water if the 
tank is full. For training, the shower, dishwasher, and laundry state arrays from the CBAs in the non-AI 
simulation are used for water tank level behavior in the environment. The home/not home array from the CBA 
is used for modeling the coming and going of the characters during training. A simulated TOU signal is also 
used for an input in training. The HWH RL agent is trained over 1,573,000 timesteps or approximately 45 
simulation years. 
 
The HVAC RL Agent is designed to ensure that the temperature in the home does not exceed +/- 1° F outside 
of the character’s preference temperature while they are home. Also, a target limit in uses per day is set that 
is based on the HVAC usage in the non-AI simulation in order to ensure the RL agent operates as efficiently as 
possible. The agent is trained to use energy as much as possible in low cost TOU signal timesteps, however, 
the major priority for this agent is comfort in the home. For training, the temperature preference and 
home/not home arrays are imported from the CBA. Also, outdoor temperature and simulated TOU signal are 
imported. The HVAC RL Agent is trained over 2,620,800 timesteps or approximately 75 simulation years. 
 
After the RL agents are trained and need to be used together in the real-time simulations, the RL agent 
environments for the HWH and HVAC RL Agents need to be modified slightly. For this 
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reason, completely new environments were made for these two agents that can be used specifically for 
real-time simulation. For HWH, the methods for determining water tank level are removed. The Agent will 
receive its tank level information from the Residence Main Environment Simulator. For HVAC, the methods 
that calculate indoor temperature after a selected action and calculate all next temperatures for all potential 
actions are removed. In real-time simulation, the indoor temperature calculation based on HVAC action taken 
will be carried out by the Residence Main Environment Simulator, while predictions of next temperature 
for all possible actions is provided each timestep by the Temperature Control FC-NN. The Temperature 
Preference FC-NN provides the HVAC RL Agent with the predicted temperature preference of the 
characters throughout the current episode. The HWH and HVAC RL Agents are updated each timestep in 
real-time simulation by the Home or Away RNN, which provides the predicted schedule of home/not 
home for the remainder of the episode. All RL agents are updated each timestep in real-time simulation 
by the Grid AI EMS TOU RNN, which provides an updated TOU signal schedule for the remainder of 
the episode. All of this information is used to update the state space of each RL agent for each timestep in 
a real-time simulation. 
 
 

4.3 Residence Main Environment Simulator 
 
The Residence Main Environment Simulator (RMES) (ResidenceAI_RTAgentEnv.py) is responsible for 
maintaining the status of the residence during real time simulation in regards to each appliance state, character 
home or away, actual character temperature preference (not from Temperature Preference FC-NN which is 
a prediction), enable state for Dish and Laundry, shower state, each appliance state, indoor temperature, outdoor 
temperature, TOU signal collected form Grid AI EMS, energy simulation for each appliance, general energy 
usage, and pricing. The RMES serves as the central control for the residence side in a real-time simulation. 
It houses all of the appliance energy simulation functions that are used in the non-AI simulator. The only 
difference is that the actions to turn on or off the appliances come from the RL agents and not from the CBA 
or, in the case of HVAC, differences in indoor temperature and character preferences. 
 
Each timestep, the RMES takes in the state of each appliance based on the actions of the appliance RL 
agents. Based on those actions, energy calculations are performed as needed. Water tank level is calculated based 
on appliance and shower usage. General energy use calculation is made from the home/not home input array. 
Final energy costs calculations are made by the RMES, although the price per kWh for each timestep is 
received from the Grid AI EMS in real time along with the TOU Signal Schedule. The pricing is based on the 
TOU signal and will be explained in more detail in another section. 
 
One of the key features of the RMES is the TOU low cost signal spreading method. On days that have 18+ 
timesteps scheduled for a low cost TOU signal, the RMES initiates a method that sends a delayed low-cost 
signal to the Laundry and HWH RL Agents. The delay is enough to ensure that one appliance has completed 
a cycle before the next should turn on. This is done to prevent all three of these agents to activate 
simultaneously, creating a large spike in demand and likely exceeding solar generation in that given 
timestep. If solar generation is exceeded and the 
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maximum use from battery is used, the remaining energy has to come from the grid. The TOU low cost 
signal spreading method was created to “spread” the demand between these appliances across the projected 
timesteps with a low cost signal, ultimately leading to less grid energy used. This does not occur every day, 
as many days do not have 18+ low cost TOU signal timesteps scheduled. 
 
 

5 Grid AI EMS 
 
The Grid AI EMS was developed to simulate a distributed resource-enabled microgrid EMS that has the 
capability to respond to behaviors in grid demand in real time and project grid demand for the remainder 
of a given day based on past behavior. Having this projection allows the grid EMS to maximize the energy 
used from the distributed sources, such as solar generation and battery storage, and minimize the energy 
used from the larger main/utility grid. The Grid AI EMS consists of the following key components: 

• Battery Storage and Solar Generation Simulator 
• Grid Load K-Means Clustering Application 
• TOU Signal Generation RNN 

 
5.1 Battery Storage and Solar Generation Simulator 

 
The Battery Storage and Solar Generation Simulator (BSSGS) (Grid_EMS.py) models the behavior of a solar 
plus storage distributed resource. Solar generation is taken as an input, which is was obtained from actual 
solar production data for Hamilton County, TN at NREL.gov/grid/solar- power-data. The battery 
parameters such as maximum available charge and max battery use per timestep are entered to define the 
constrains of the battery behavior. For this project, these values were 34.1 kWh and 1.705 kWh/timestep 
respectively. Grid load/demand is another input into the BSSGS. 
 
The priority for addressing grid demand for a given timestep is in the following order: power from solar, 
power from battery storage, power from main/utility grid. Using this approach, energy from the grid is 
only used to meet load demand if there is not enough solar generation or batter charge available. The 
program does not allow battery charging from the main/utility grid, which means battery can only be charged 
from solar generation. The program has a setting that allows for charging from grid, but this was not enabled 
for this project. The BSSGS saves the battery state at each timestep, and also logs the usage from the 
main/utility grid and the excess solar for each timestep. Excess solar occurs when the entire grid demand is 
met and the battery is fully charged in a given timestep. 
 
The BSSGS contains a method for creating the TOU signal based on the thresholds provided in the AI System 
Overview section. A TOU pricing array is also created that is based on the TOU signal generated. TOU 
pricing uses the TOU pricing data from California as a guide, and gives prices per kWh based on the 
parameters listed in Table 7: 
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Table 7: TOU Price Generation Parameters Based on TOU Signal 
TOU Signal TOU Price Calculation 

-1 $0.01/kWh 
0 Base TOU Cost for that day from California TOU Pricing Array 

 
 

+1 

• If the timestep is between the hours of 4:00PM – 9:00PM the maximum cost 
for that day from the California TOU Pricing Array 

• If the timestep is outside of 4:00PM – 9:00PM, the price will be the mean 
between the base and max cost for that day in the California TOU Pricing 
Array 

 
It is important to note, during real-time simulation two versions of the BSSGS are created. One is the Main 
BSSGS which monitors that actual grid load, solar generation, battery storage, and creates actual pricing 
based on the real outputs of the system. Another Virtual BSSGS is created to support the TOU Signal 
Generation RNN. This Virtual BSSGS takes in the actual battery state and solar generation from the Main 
BSSGS, but then uses the clustered load from the Grid Load K-Means Clustering Application and/or the TOU 
Signal Generation RNN feedback loop to simulate the battery and solar production behavior based on the 
predicted load behavior from the RNN. So the Virtual BSSGS us updated with real information each 
timestep, but then cycles in a loop with the TOU Signal Generation RNN using the predicted clustered load to 
create the TOU Signal Schedule for the remainder of the episode. This TOU Signal Schedule is then 
delivered to the Residence AI EMS. The process repeats itself in the next timestep. 
 
 

5.2 Grid Load K-Means Clustering Application 
 
The Grid Load K-Means Clustering Application (GLKMCA) was implemented to improve the 
performance of the TOU Signal Generation RNN, by allowing the load prediction to fall within groupings. 
Viewing the load demand curve from the residence, the load usage can be grouped into clusters. In order to 
automate this process, the GLKMCA was created. The scikit-learn Python machine learning library was used 
to perform the K-Means Clustering applications. 
 
The first step in any clustering approach is to identify the number of clusters that exist within a dataset. An 
elbow plot was produced to determine the practical number of clusters for residential load (Figure 6). 



 21 

 
Figure 6: Elbow Plot for Grid Load Cluster Analysis 

 
Based on Figure 6, 4 clusters should be used for grouping residential load. This is apparent because error 
does not decrease much beyond 4 clusters. Having four clusters creates four possible categories for load 
behavior to fall into, which makes for a much higher success rate for the RNN that is predicting load behavior 
for remaining timesteps in an episode. 
 
The GLKMCA uses the residential grid load behavior for each scenario to create the centroids for each cluster, 
which are in kWh. Four clusters are used for each scenario. In real time simulation, the GLKMCA takes in the 
raw residential load from the Residence AI EMS (Figure 3) and sorts the load into the appropriate cluster. The 
clustered load from the previous 96 timesteps is logged and is also input into Grid EMS State Space. The 
clustered load also fed into the Virtual BSSGS for processing and further input to Grid EMS State Space. 
When the TOU Signal Generation RNN makes a load projection, this projection is ran in the GLKMCA to 
convert the predicted cluster number into the centroid value for that cluster, which is in kWh. This value 
is then fed back to the Virtual BSSGS to determine the next battery state and ultimately the projected TOU 
signal for that timestep. The GLKMCA is critical for both clustering and de-clustering of residential grid load 
values within the Grid AI EMS workflow. 
 
 

5.3 TOU Signal Generation RNN 
 
The TOU Signal Generation RNN is really a full system that performs load behavior projection, simulates 
future solar generation and battery storage behavior, and generates a projected TOU signal for the remining 
time steps in a given episode. The load prediction RNN has the same architecture as the Home or Away 
RNN, using 96 LSTM cells with 64 neurons per cell (Goodfellow et. al, 2016). The major difference is the 
output function is Softmax, since the load prediction for 
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any one timestep is actually the cluster number (0, 1, 2, or 3). Categorical Cross-Entropy is used as the loss 
function with Adam optimization in back propagation during training (Goodfellow et. al, 2016). 
 
The data used to train the load prediction RNN is taken from a simulation where the full Residence AI EMS 
is used with a simulated TOU signal based on the non-AI simulation energy profile 
(ResAI_RT_NoGridAI_SingleHome.py, ResAI_RT_NoGridAI_ThreeHome.py). This is done to ensure that 
the grid load behavior of the AI-enabled residence is captured and used for training, rather than a 
completely different grid behavior of non-AI enabled residence. While this is not an ideal approach it was 
the best course of action for this proof of concept project. An improvement to this project could be 
instituting daily stochastic training for all ML elements, which would allow the use of the Grid AI EMS 
much earlier. This was not possible given time constraints for this project. 
 
The input class vector for the load prediction RNN is scalar and consists of the clustered residential load 
output from the simulation using the Residence AI EMS and a simulated TOU signal. The residential load 
array is put into the GLKMCA, yielding an array of clustered load. This array is then converted into a one-
hot matrix, yielding an array of shape (34944, 4). The input class vector also contains the simulated TOU 
signal and the scalar time array. The initial input class vector is of shape (34944, 9). Similar to the Home or 
Away RNN, a timestep is paired with the clustered load in the next timestep. A loop is put in place to carry 
out this pairing, another loop is conducted to stack the training examples in groups of 96. The resulting 
array is of the shape (34848, 96, 13). This array is then shuffled randomly along the first axis and split into the 
input array (X) of shape (34848, 96, 9) and labeled output array (Y) of shape (34848, 96, 4). The training 
samples are then grouped into training, validation, and testing sets as consistent with other NNs in this 
project. The RNN is trained for 100 epochs. The accuracy results for all scenarios is 96%+. 
 
During real time simulation the TOU Signal Generation RNN works be taking in the clustered residential 
load for the previous 96 timesteps from the GLKMCA, as well as the TOU signal from the previous 96 
timesteps. These are combined with the Time Vector to create a prediction of clustered load for the next 
timestep. This predicted cluster category number (0, 1, 2, 3) is then ran into the GLKMCA for de-
clustering. The output is the centroid of the respective predicted load cluster, which has a value in kWh. 
This value is fed into the Virtual BSSGS to simulate projected battery behavior based on projected solar 
production. From here a projected TOU signal is created. The projected TOU signal and predicted load 
cluster are then cycled back into the Grid EMS State Space to be used as input for predicting load for the next 
timestep (Figure 3). This process is repeated until all of the remaining timesteps have a predicted load, and 
therefore a TOU signal generated from the Virtual BSSGS. This projected TOU Signal Schedule is then 
extracted from the TOU Signal Generation RNN and delivered to the Residence AI EMS. The entire process 
repeats in the next timestep of the real-time simulation (Figure 3). 
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6 Simulation Results and Discussions 
 
The simulation results are provided and discussed on the website we have launched for this project. Please see 
http://ai-energymanagement.weebly.com/ for more details. 
 

7 Future Improvements 
 
Given the time constraints for this project, there were many features that could not be implemented and/or 
other scenarios that should be considered in continuations of this project. Considerations for future 
improvements are listed below. 

• Custom made RL agents for appliances that incorporate more robust neural networks for policy 
development. 

• RL agents that implement goal-oriented training and include methodologies such as 
Hindsight Experience Replay 

• Custom Load Prediction RNNs for each household for multi-home grids, instead of one Load 
Prediction RNN for the entire grid. 

• Scaled solar array and battery storage capacity along with a revised costing scheme for single-
home simulations. 

• Stochastic training of ML elements on a daily or weekly basis. 
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