

High Voltage Conductor Identifier

EE465 – Senior Design II

Senior Design Project

Final Design Report

Cole Hennies

Cody Decker

Department of Electrical Engineering and Computer Science

South Dakota State University

May 3, 2023

1

1. Introduction ... 3

1.1 Background .. 3

1.2 Problem Motivation.. 3

1.3 Project Description ... 4

2. Scope ... 4

2.1 In Scope .. 4

2.2 Out of Scope ... 4

3. Design Requirements ... 4

3.1 Objectives, Requirements, Specifications .. 4

3.2 Constraints .. 5

4. Design/Technical Solution .. 6

4.1 Overview .. 6

4.2 Hardware Implementation .. 6

4.2.1 Submodule Design ... 7

4.2.1.1 Battery Charging ... 7

4.2.1.2 Voltage Regulators.. 8

4.2.1.3 Microcontroller ... 10

4.2.1.4 Signal Processing .. 10

4.2.1.4.1 Current Detection .. 10

4.2.1.4.2 Rogowski Integrator.. 11

4.2.1.4.3 RMS-DC Converter .. 11

4.2.1.4.4 Zero Crossing Detection ... 13

4.2.1.5 Cellular Module .. 14

4.2.1.6 GPS Module .. 15

4.2.2 PCB Layout .. 16

4.2.3 Case Design .. 19

4.3 Software Implementation ... 20

4.3.1 Peripheral Initialization .. 22

4.3.2 Operational Loop.. 22

5. Testing Procedures .. 23

5.1 Specification Testing .. 23

6. Design Budget and Expenditures .. 26

2

7. Conclusions ... 27

8. References ... 28

9. Appendix ... 28

3

1. Introduction
1.1 Background

Many power companies supply power to homes and businesses directly, which presents challenges

with maintenance and new construction. Maintenance includes splicing damaged wire, replacing

and testing equipment. All these aspects of power distribution system maintenance can require that

a part of the distribution grid be taken offline. Field maintenance crews are unable to accurately

identify phases and parallel circuits of underground conductors without disconnecting power,

which costs power companies time and money. If field personnel are instead provided a way to

properly identify each line while live, they can perform maintenance with reduced downtime.

Underground distribution lines may run up to 2,500 ft between above-ground access points.

Because of the long distance, a wireless method of communication must be implemented.

Inaccurately identifying energized lines also poses a safety hazard for technicians and engineers

working in the field. As such, the method of measurement must be non-intrusive and safe.

The objective is to design a stand-alone portable measurement system that a single individual can

use, in real time, to accurately identify and differentiate between energized phases and parallel

feeds. A High Voltage Distribution Phase Identifier will provide accurate identification of

energized lines, thus increasing safety and efficiency for the user.

The SDSU CPSS team is proposing a system that improves crew safety, reduces downtime for

utility customers, increases productivity during routine or emergency maintenance, thus saving

both the utility and its customers money. Several systems currently exist to determine phase while

live. The main competitor devices for this project, the Phase Trakker Jr and SPI-III, both use non-

intrusive measurement devices to obtain phase data of live lines. However, their prices range

between $2000 and $7200. One of the goals of this project is to develop two devices that in total

cost less than $1000.

The sponsor of this project is the Electric Power Research Institute GridEd (EPRI GridEd). They

provided us with $5000 total to spend on the project with a $1000 budget going toward the

development of the actual devices and $4000 being spent on test equipment. The customer and

advisor for this project is Dr. Steven Hietpas, PE (EE).

1.2 Problem Motivation

This project is currently in its 3rd design phase. In Phase I (2019-2020 academic year), the team

was comprised of three members: Zach Kirsch, Erik Ode, and Obinna Ezugu. They were

challenged with the Covid-19 global pandemic, which curtailed the prototype development in

March of 2019.

Although the Phase I team faced unforeseen setbacks due to Covid-19, they accomplished a design

where data of phase and current magnitude could be measured non-intrusively and stored on a SD

card for post analysis. In summary, the Phase I group successfully developed a:

1. Non-intrusive measuring method able to measure with relative accuracy both magnitude

and phase.

2. Time-stamp method to synchronize stored data from both the master and slave units using

off-the-shelf GPS receiver chip set.

3. Post analysis was implemented within a spreadsheet.

4

In phase II of the project, the scope was expanded to have a functional prototype, Fig. 1, which

integrated the modules in Phase I, while also incorporating wireless RF communication [1]. It was

capable of circuit and phase identification on three phase circuits with energized lines. However,

RF system selected limited the design to line-of-sight communication.

1.3 Project Description

Phase III will focus on alternative implementations of the design from the second phase of the

project. Most notably will be exploring other options for implementation of the front-end

measurement circuitry as well as different methods of communicating wirelessly between the two

devices. The goal of these design changes is based on increasing communication capabilities and

reduce costs while improving the accuracy of phase and circuit identification. In Table 1, two

devices that determine phase while the line is energized are shown. The high prices of these devices

are the main motivation for this project. The two devices have been used in industry in the past,

however, the previous sponsor felt as though the devices did not work very well and are looking

for a better solution. The goal of this project is to make a device that can identify line current

phases and parallel conductors of the same phase at a cheaper price point.

2. Scope
2.1 In Scope

1. Design a phase identifier

2. Design a device that can discern between parallel conductors

3. Integration of a wireless communication system

4. Design a mirrored user interface on both devices

5. Implementation of a portable power source.

2.2 Out of Scope

1. Storage and/or ability to download for archival purposes

2. 3-D printing of prototype case

3. Design Requirements
3.1 Objectives, Requirements, Specifications

1. Objective: Distinguish between parallel lines of same phase, while energized

1.1 Requirement: Distinguish between parallel lines of the same phase

1.1.1 Specification: The magnitude of the current shall be within 50% of the minimum

differential between parallel lines.

2. Objective: Identify individual line current phases

2.1 Requirement: Identify individual line current phases

2.1.1 Specification: Phase values shall be within +/- 10 degrees

3. Objective: Display Information to user

5

3.1 Requirement: Display current, phase, and line-phase-match indicator to user on both

devices

3.1.1 Specification: Information display must be readable from 5 feet away

4. Objective: Device shall be portable
4.1 Requirement: Device shall be powered by a battery

4.1.1 Specification: Device shall operate for a minimum of 2 hours

4.2 Requirement: Device shall be hand-held

4.2.1 Specification: device shall be less than 210 x 100 x 60 mm

4.3 Requirement: Device shall be hand transportable

4.3.1 Specification: device shall weigh less than 8 pounds

5. Objective: System shall communicate wirelessly

5.1 Requirement: Device shall communicate to cellular network

5.1.1 Specification: Device shall connect to a cell tower from a minimum distance of 2

miles

6. Objective: Meet Applicable Safety Standards 

6.1 Requirement: FCC title 47 standards [4]

6.1.1 Specification: Shall adhere to FCC title 47 standards regarding

telecommunications

6.2 Requirement: FAA 49 CFR175.10 standards [5]

6.2.1 Specification: Shall adhere to FAA 49 CFR 175.10 standards regarding

transportation of batteries on airlines

3.2 Constraints

The customer has stated the following constraints:

1. Design

1.1 Measurements are non-intrusive. 

1.2 Galvanic connection to conductors cannot be made. 

2. All components must be available from a minimum of two OEM vendors.

6

4. Design/Technical Solution

4.1 Overview

To solve the problem, two identical devices that are portable, handheld, and communicate

wirelessly were designed. Figure 1 shows the general overview of how both devices will be

communicating with each other. Both devices will be synchronized with each other using a GPS

chipset. This is necessary to measure the phase as well as getting the precise timestamp as to when

each measurement is taken. The devices will communicate with each other using an application

peripheral interface (API) over the cellular network. Each device will be equipped with a flexible

current transducer known as a Rogowski coil which outputs a signal proportional to the differential

current flowing through the conductor it is wrapped around. This sinusoid is then passed to a zero-

crossing detector circuit for phase identification. This signal is also used to determine the current

magnitude using an RMS-DC converter by converting the sinusoid into a DC value that the

microcontroller can use.

Figure 1: Overview of Proposed Solution

4.2 Hardware Implementation

The primary design consists of 6 main subsystems per device. These subsystems include battery

charging, LCD display, microcontroller, signal processing, cellular module, GPS (global

positioning system) module, and power supplies. The high-level block diagram can be seen in

Figure 2. Each individual device makes a non-galvanic connection to a prospective conductor to

be identified via a current measuring device, which outputs a scaled sinusoid of the waveform

running through the conductor. This waveform is processed in the zero crossing and current

magnitude (signal processing subsystem). The GPS module, microcontroller, and cellular module

all work together to process the zero crossing timings and magnitude and communicate the

information between the devices before it is finally displayed to the user via the LCD display.

7

Figure 2: High Level Block Diagram

4.2.1 Submodule Design

The PCB layout for both devices is completely identical. The board contains all subsystems except

the cellular module soldered directly onto the board. The cellular module circuitry is instead

connected to the other subsystems through a development board and Arduino header.

4.2.1.1 Battery Charging

The entire device is powered by a single 3.7V lithium-ion battery. A single lithium-ion battery was

chosen as opposed to a proprietary power-tool type battery or standard alkaline batteries to cut

down on weight and size of the system (increased portability) while still including the ability for

charging. For battery charging, it was decided that a USB-C female connector would be the best

choice because of the widespread use of USB-C charging. In addition to the USB-C port, a battery

charging IC was also integrated into the PCB design with two LED indicators. The charging IC

that was used was the BQ24072. This IC was chosen after doing some research on charging IC’s

because it can charge at 0.5A and has the feature of having USB power passthrough meaning the

device can be powered straight off of USB power. External resistors control the current flow into

the battery. For the LED indicators, one LED indicates if the battery is charging and the other

indicates if USB power is detected. Figure 3 is the entire design for the battery charging circuitry

and USB-C connector. The approximate power budget for the entire device can be seen in Table

1. This includes the approximate theoretical duration of the battery to meet the 2-hour specification

with the components that draw the most power.

8

Figure 3: Battery Charging Circuit

Table 1: Power Budget Approximation

4.2.1.2 Voltage Regulators

There are three voltage regulators that are needed for the PCB. The first is the +5V regulator to

power the LCD Display as well as the 3V regulator and the -5V regulator. The +5V regulator that

was chosen was the TPS613222ADBVR boost regulator. This was to increase the voltage of the

battery to a regulated +5V. This IC was chosen because it has a higher than 90% efficiency, has

thermal shutdown protection, and comes in a small package. It also only requires only 3 external

components consisting of one inductor and two capacitors. The +5V regulator design can be seen

in Figure 4.

Component Description Power (W)

TL084 Quad Op-Amp 0.0186

LTC1968 RMS-DC Converter 0.015

Ublox MAX-8C GPS 0.0594

TAOGLAS Antenna GPS Antenna 0.0396

20x4 LCD LCD Screen 3.75

Botletics SIM7000 Cellular Module 0.3828

Total 4.2654

Battery Pack Capacity (Wh) Duration (h)

Adafruit 2.5Ah battery 9.25 2.17

9

Figure 4: +5V Regulator

The next voltage regulator that is needed is the 3.3V regulator to power the microcontroller and

GPS. The 3.3V regulator that was chosen was the AP7361C-33ER linear regulator. The input to

the regulator was coming from the output of the +5V boost converter. A linear regulator was

chosen for this module because there will not be significant power losses going from 5V to 3.3V.

Any linear regulator that outputs 3.3V would suffice for this power supply, but this one was chosen

because it comes in a small footprint and only requires 2 capacitors. Figure 5 shows the 3.3V

regulator design.

Figure 5: 3.3V Regulator

The final voltage regulator that was needed was the -5V regulator to power the op-amp as well as

the RMS-DC converter. Because the op-amp and RMS-DC converter do not draw a lot of power,

an inverting charge pump IC was used. The IC that was used was the MAX1673esa inverting

charge pump. The inverting charge pump was chosen for the -5V regulators because there would

not be large amount of current draw and the inverting charge pump is a good choice for this

application. The output of the charge pump is controlled by two external resistance using feedback.

The equation for the output voltage can be seen in (1). When supplying +5V to the inverting charge

pump, two 100kΩ resistors can be used to achieve -5V at the output. The -5V regulator design can

be seen in Figure 6.

𝑉𝑜𝑢𝑡 = −𝑉𝑅𝐸𝐹 (

𝑅2

𝑅1
)

(1)

10

Figure 6: -5V Regulator

4.2.1.3 Microcontroller

The hub for all the communications and calculations is the microcontroller. The microcontroller

chosen for this project was the Texas Instruments TM4C1233H6PM. This microcontroller was

chosen because we were familiar with using other TI microcontrollers as well as using the

programming software called Keil. It was also chosen because it has enough storage for the

expected size of the program as well as enough GPIO’s, UART’s, I2C, and ADC’s.

4.2.1.4 Signal Processing

The signal processing section consists of everything from connection of the current transducer to

the signal inputs to the microcontroller. This section consists of 4 main subsections including

current detection, integration, RMS-DC converter, and zero-crossing detection.

4.2.1.4.1 Current Detection

The first component of the signal processing is the Rogowski Coil. The Rogowski coil is a device

that is used for measuring AC currents and is also known as a flexible current transducer (CT).

The Rogowski coil physically is a toroid of wire that has a voltage output that is proportional to

the rate of change (derivative) of the current of the conductor that the CT is wrapped around. To

get the magnitude and the current waveform of the conductor, an integrator circuit is required.

Figure 7 depicts how the Rogowski coil works in conjunction with a conductor. For ease of

installing the Rogowski coil, a female BNC jack is connected to the end of the wire to connect to

the device.

11

Figure 7: Rogowski Coil Schematic

4.2.1.4.2 Rogowski Integrator

To get the current waveform from the Rogowski coil, an integrator circuit is required. Texas

Instruments has a 47-page document detailing how to create the best integrator circuit for the

Rogowski coil depending on the application and this document was used for the basis of the

integrator design [2]. For this design, emphasis on precision measurement was essential. The

integrator that was used was the inverting integrator that consists of two resistors and a capacitor.

The component values and design of the integrator can be seen in Figure 8. The component values

were chosen to achieve a gain of 9V/V. This was chosen specifically because the RMS-DC

converter has a very limited input voltage range, and the gain of this front stage could not be any

higher without exceeding the limits of the RMS-DC converter. During initial testing, it was found

that there would be a DC offset at the output of the op-amp due to leaky capacitors in the integrator.

Because of this, an AC coupling capacitor was placed on the output of the integrator along with a

large resistor.

Figure 8: Inverting Integrator

4.2.1.4.3 RMS-DC Converter

12

The RMS-DC converter is used to get the RMS value of the current flowing through the high

voltage conductor. The RMS-DC converter used was the LTC1968 because it is one of the only

options for an RMS-DC converter that was available. This device has a limited input voltage of

1V and supply voltage of a maximum of 6V. Two Zener diodes were used to regulate the device

at +/- 2.4V. This was done to improve the linearity of the device and followed TI’s datasheet. The

output of the RMS-DC converter was an amplifier with a gain of 3V/V. This was done to get the

maximum resolution out of the ADC of the microcontroller. Figure 9 shows the design of the

RMS-DC converter and gain stage.

Figure 9: RMS-DC Converter Design

After designing the RMS-DC converter, the linearity of the converter was characterized by

connecting the Rogowski coil to a conductor on the Automatic Load Bank (ALB) and increasing

the load slowly and recording the output voltage as well as measuring the line current. Table 2

shows the comparison of the RMS-DC voltage to the line current. After this, Figure 10 was created

using the data and the 𝑅2 value was found along with the slope of the line. This would later be

used by the microcontroller to display the actual line current using the DC voltage of the RMS-

DC converter. The 𝑅2 value was found to be 99.82% meaning that 99.82% of the variation in the

y values are accounted for by the x values. The data is also very linear throughout the entire test.

Table 2: RMS-DC Converter Characterization Results

RMS-DC Voltage (V) Line Current (A)

0.17 35

0.195 40

0.222 46.5

0.248 52.5

0.272 58

0.3 65

0.33 70

0.356 77

0.388 82.5

0.41 89

0.443 95

0.475 103.5

0.509 110

0.545 115

0.57 120

13

Figure 10: RMS-DC converter characterization plot

4.2.1.4.4 Zero Crossing Detection

The zero-crossing circuit is used to measure the phase of each conductor. This was done by taking

the output from the integrator to an op-amp biased at 0V. This means that when the input goes

above 0V, the output will go high and when it goes below 0V, the output will go low. To limit the

output to 0-5V, a Schottky diode was used along with a current limiting resistor. The zero-crossing

circuitry design can be seen in Figure 11. Figure 12 shows the comparison of the input vs the

output of the zero-crossing detection circuit. Figure 13 shows the comparison of two different

Rogowski coils on different phases and comparing the zero crossing results. Looking at the time

difference between the two rising edges, the time is 5.56ms which is equivalent to a 120° phase

shift.

Figure 11: Zero Crossing Design

y = 216.01x - 0.9723
R² = 0.9982

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6

Li
n

e
C

u
rr

en
t

(A
)

RMS-DC Voltage

14

Figure 12: Zero crossing detection results for output from integrator (green) and output of zero

crossing detection circuit (yellow)

Figure 13: Comparison of two zero crossing devices on different phases shown

4.2.1.5 Cellular Module

For both devices to communicate with each other, it was decided that cellular communication

would be one of the best options for this project. Each device has its own cellular communication

module to send and receive data between one another. The cellular module that was chosen was

the Botletics SIM7000. This module is based on the SIMCom SIM7000G chip set and the

development board is shown in Figure 14. This module sits right on top of the PCB and connects

using headers. Along with the module, a special SIM card is needed as well to connect to the

15

network. The card chosen for this was the Hologram Global IOT SIM card. This allows the module

to communicate and send and receive data.

Figure 14: Cellular Communication Module

For both devices to communicate, an Application Peripheral Interface (API) was used. In this case,

the API used was called Dweet.io and was free to use and easy to debug and analyze data. An API

is a way to send and retrieve data from a server and is a very good way of sharing data between

devices. This is a very common way in industry to efficiently share data between devices and to

look at the status of the device on a network. Each device has its own specific identification number

and posts its data to the API. The opposite device will then be able to get the other devices data

that it had posted and perform the calculations to determine if the devices are in or out of phase

and if they are on the same line.

4.2.1.6 GPS Module

Both devices are equipped with a Global Positioning System module (GPS) that can provide

essential information such as Coordinated Universal Time (UTC) as well as a pulse per second

(PPS). The PPS signal is the most important part of the entire project. The GPS chosen for this

project was the U-blox Max-8C as it can provide UTC time as well as the PPS signal without being

super expensive. The PPS signal is used to synchronize both devices to each other and this signal

was found to be accurate to around 20ns. The GPS module layout can be seen in Figure 15. The

GPS antenna is connected using a U.FL connector.

16

Figure 15: GPS Module Design

Along with the GPS module, a special active antenna was also purchased and attached to the U.FL

connector. The GPS antenna that was chosen was the TAOGLAS AP.25F.07.0078A and can be

seen in Figure 16. This is a two stage GPS active patch antenna with front-end Saw filter. With

the two-stage low noise amplifier (LNA), the gain is 28dB which was the highest gain patch

antenna readily available. The LNA’s are what amplify the small GPS signal and the SAW filter

is often used when Global System for Mobile Communication (GSM) transmitters are close to the

GPS antenna. In this case, the GSM transmitter is the cellular communication module. Without a

SAW filter, the active antenna can be oversaturated with the GSM signals. The RL filter connected

to the coaxial connector is to supply the GPS antenna with 3.3V and the design followed the

datasheet for the GPS module.

Figure 16: GPS Antenna

4.2.2 PCB Layout

The entire PCB layout and design was accomplished via KiCad. All the IC’s were either imported

or found using the KiCad library and the appropriate package and sizes for all the resistors,

capacitors, and inductors can be selected. All resistors, capacitors, and inductors were chosen to

be 0805 sizes for ease of soldering. Figure 17 shows the entire schematic layout and wiring

17

diagram for the project. Also included in this, that was not mentioned before, is the power switch

represented by SW1. A SPST switch was soldered onto the board to turn it on and off.

Figure 17: Overall Schematic Layout and Wiring Diagram

For the PCB layout and design of the actual board, all the parts and packages were imported and

laid out grouping components accordingly. High frequency devices such as the microcontroller,

signal processing, battery charging, and power regulation were kept far away from the GPS

modules to reduce the interference. Figure 18 shows the entire layout including all traces for the

PCB. The board design consists of a two-layer board with a ground plane on bottom (blue) and

ground/signal plane on top. All the components were laid out to reduce the length of the traces as

much as possible. On of the most important parts of the PCB design was the layout for the GPS

module. In the initial stages of testing, the signal strength of the GPS was very low. This problem

was solved by following the GPS’s datasheet for PCB layout design by adding an entire ground

plane on top and creating lots of vias going to the bottom ground plane. In addition to this, a

coplanar wave guide was also designed for the antenna coming from the U.FL connector. This is

to ensure a 50Ω line to match the impedance of the coaxial line on the GPS antenna. KiCad has a

built in tool used to calculate impedance of transmission lines and can be seen in Figure 19. This

change alone made the GPS signal strength increase by around 10dB and was a huge improvement

to the initial design. The LCD display is connected to the board using long wires and communicates

18

using the I2C protocol. The LCD display chosen was a generic 20x4 display to display all the

necessary information such as phase, frequency, current magnitude, and line match.

Figure 18: PCB Design and Layout

Figure 19: GPS Antenna line calculation/design

19

4.2.3 Case Design

The entire PCB, cellular module, GPS, and LCD screen was designed to fit snugly inside a

handheld plastic case designed by Hammond Mfg. (Part No. HM 3998-ND). The PCB was

mounted using screws and standoffs inside the case. Holes were drilled for the USB-C charging,

BNC connector for the Rogowski coil connection, as well as the power switch. The LCD display

was mounted using cyanoacrylate and hot glue. The GPS antenna and cellular antenna were

mounted to the case using double sided tape. One of the best improvements to GPS signal quality

was moving the GPS antenna to the top of the cellular module. This increased our signal strength

on average by around 20dB and improved the time to first fix to satellites down to 2 minutes

maximum indoors compared to sometimes the tens of minutes that were required before. Figure

20 shows the inside design for the case including mounting position for the battery, GPS antenna,

PCB mounting, and cellular antenna. Figure 21 shows the entire product assembled.

Figure 20: Inner Case Design

20

Figure 21: Assembled Product

4.3 Software Implementation

Software implementation for each individual device used code which follows a two-step process

of first initializing all peripherals and then entering an infinite operational loop for gathering and

displaying data. The flow diagram for the software implementation is shown below in Figure 22.

A more top-level outline for how the software loop calculates and displays to the user shown in

Figure 23.

21

Figure 22: Software Implementation Flow Diagram

22

Figure 23: High Level Flow Diagram

4.3.1 Peripheral Initialization

The software begins with a simple initialization process that turns on and/or configures all

peripherals of the microcontroller (LCD display, GPS, Cellular Module). For the LCD display, it

is powered up and configured for 4-bit command mode in which commands must be sent in nibbles

(4-bits at a time). The GPS is configured to disable all default messages while also enabling the

ZDA GNSS sentence to be produced every second, which provides information only pertaining to

the date and time. Finally, the cellular module is turned on by pulsing the PWRKEY pin of the

development board to a LOW voltage and connecting the module to the DWEET.io API.

4.3.2 Operational Loop

Following peripheral initialization, each microcontroller enters an operational loop in which it

switches between taking data and updating information to the cloud and its own display. The data

polling loop consists of periodically checking the values read by the ADC, receiving timestamps

from the GPS, and timing zero crossings. This process continues until a UTC time divisible by 10

is reached (ie 12:30.40PM). This triggers both microcontrollers to simultaneously enter their

informational updating state. First the cloud data for each respective device is updated, after which

the data for the other device is pulled (with an appropriate delay to ensure that the information has

been received by the cloud). Afterwards, the microcontrollers compare the local and pulled data

to calculate phase differences, line current matches, and frequency.

23

5. Testing Procedures
5.1 Specification Testing

Each specification outlined in the objectives, requirements, and specifications part of this report

were tested against a set of procedures proving that the standard has been met. For specifications

regarding regulations of communications electronics, proof that the specification standards have

been met is shown with the manufacturer testing procedures for each specification are outlined in

Table 3 and Table 4 shown below.

Table 3: Specification Testing Procedures and Results

Specification
The magnitude of the current shall be within

50% of the minimum differential between
parallel lines.

Phase values shall be

within +/- 10 degrees

Information display

must be readable from
5 feet away

device shall operate for

a minimum of 2 hours

Equipment
(Devices

incl.)

ALB power bench
Current probe

ALB power bench Measuring Tape Timer

Procedure

1. Analyze current draw data for nearby
substations for current draw differences
between parallel lines.

2. Initialize device(s).
3. Initialize ALB(s).
4. Initialize current probe(s).
5. Attach Rogowski coils to any phase. Attach

current probe(s) to the same phase.
6. Check that difference between device

reading and current probe reading is
within the tolerance value of the minimum
current difference between parallel lines.

1. Initialize
device(s).

2. Initialize
ALB(s)

3. Attach
Rogowski coils to the
same phase of ALB.

4. Check that
phase reading is
within the phase
tolerance threshold
of the nominal phase
difference value.

5. Attach
Rogowski coils to
differing phases of
ALB and repeat
previous step (4).

1. Initialize device(s).
2. Set device on a level

surface at an
elevation between
3-6ft from ground in
the hours of 8-5PM.

3. Check readability
from a marked
position directly in
front of device at 5
feet away.

1. Initialize device(s).
2. Ensure cellular and

GPS connection has
been established.

3. Check if device(s) are
on every 15 minutes
until minimum
operating threshold
has been surpassed.

Pass/Fail Pass Pass Pass Pass

Comments
Typical error <3 Amps, minimum

differential from substation data 6

Amps [2]

• Error at low

current (<100A)

~6 degrees

• Error at high

current (>100A)

 ~1 degree

Readable from up

to 10 feet

255 mA typical

operating current

(1.05W at 4.2V)

200 mA when

idling without

cellular connection

Date of Test 3/30/2023 3/30/2023 3/30/2023 4/12/2023

Tester(s)
signature

CD CD CD CD

Table 4: Specification Testing Procedures and Results Continued

24

Specification
Device dimensions shall
be less than 210 x 100 x

60 mm

device shall
weigh less than

8 pounds

device shall connect to a

cell tower from a

minimum distance of 2
miles

Shall adhere to FCC

title 47 standards

regarding
telecommunications

Shall adhere to FAA

49 CFR 175.10
standards regarding

transportation of

batteries on airlines

Equipment
(Devices

incl.)

Measuring Tape Scale Map
None-Rated by third

party
None-Rated by third

party

Procedure

1. Measure X,Y, and Z
axis of devices.

2. Check if respective
dimension thresholds
are surpassed.

1. Weigh
device(s).

2. Check if
weight
threshold
exceeded.

1. Find location(s) of
cellphone tower in
FCC database:
(https://wireless2.fcc
.gov/UlsApp/AsrSear
ch/asrRegistrationSe
arch.jsp)

2. Travel to a location
~2 miles away from a
tower.

3. Initialize device(s)
and check that API
has been updated.

1. Check that GPS and
Cellular modules
comply with FCC title
47 according to
manufacturer specs.

2. Check that Li-ion
batteries used by
device(s) do not
exceed 100Wh
rating according to
manufacturer specs.

Pass/Fail Pass Pass Pass Pass Pass

Comments
Device dimensions:

235x177x38 mm

Device+coil:

1lb, 6.3 oz
No comment

FCC Approval IDs

SIM7000:2AYJU

NEO6: N/A,

module not subject

to regulation

3.8V, 2.5Ah

batteries

9.5 Wh

Date of Test 4/14/2023 4/14/2023 3/28/2023 4/12/2023 4/4/2023

Tester(s)
signature

CD CD CD CD CD

Field Testing

In addition to testing each of the specifications, a field test was also performed. This consisted of

testing the system in various configurations (parallel lines, varying distance, differing phases, etc.).

Table 5 outlines the displayed results for each of the conditions that the system was operating

under.

Field testing was conducted at a MidAmerican 7.4kV substation in Dakota Dunes, South Dakota.

The first stage of testing consisted of a tour of the facility, including a tour of the onsite SCADA

equipment and potential conductors that the system could be testing on. Eventually it was decided

that the best plan of action would be to first conduct short range testing by connecting the system

in various configurations to the secondary side of the transformer as seen in Figure 24. This would

be followed by longer range testing in which one device would be connected to the transformer,

while the other would be connected to a feeder approximately 50 feet away. These conductors

were chosen because they provided an open view of the sky, and therefore better cellular and GPS

connection, as well as drawing a current of about 200 amps which guarantees accurate readings.

https://wireless2.fcc.gov/UlsApp/AsrSearch/asrRegistrationSearch.jsp
https://wireless2.fcc.gov/UlsApp/AsrSearch/asrRegistrationSearch.jsp
https://wireless2.fcc.gov/UlsApp/AsrSearch/asrRegistrationSearch.jsp
https://wireless2.fcc.gov/UlsApp/AsrSearch/asrRegistrationSearch.jsp

25

Figure 24: Live field testing on secondary transformer

Table 5: Field Testing Data

Xfrmer-
>Xfrmer Phase (deg)

Actual
Phase Current

(A)

Xfrmer-
>Feeder

Phase
(deg)

Actual
Phase Current

(A)

A->C 120 120 198/190 A->C 113 114 165/77

A->B 111 113 193/194 A->A 7 6 169/87

B->C 129 127 178/171

A->A 0 0 199/178

B->B 0 0 198/197

A->B' 110 113 199/178

B->C' 129 127 196/177

26

The system was able to identify whether lines were of the same phase and discern the difference

between parallel conductors. One major observation that was different from expected was the

phase being offset from a multiple of 120 degrees. For example, when measuring between phases

B and C, a phase difference of 110 degrees was shown instead of 120. Similar offsets (127 degrees)

were seen when measuring over a long distance from phase A to C. While at first this was thought

to be due to some sort of magnetic coupling between conductors, further analysis of data from

monitoring equipment at the substation show that the current phases were in fact roughly 7-10

degrees away from a balanced value of 120 degrees. Other issues that arose during testing were a

periodic lack of adequate signal for the GPS to identify conductors, as well as one of the devices

shutting off roughly ~2 hours into testing. This first issue was attributed to the feeder device

operating near a large metal building with shielding occurring, while the device powering down

was due to the wall charger that was used to charge the device the night before not having a good

connection.

6. Design Budget and Expenditures
The total budget given for this project was $1000 on the design for the two devices and $4000 for

test equipment that may need to be purchased. The overall budget that was spent can be seen in

Table 6. The total expenditure on all components was $879.68. This falls under the $1000 budget

that was given to us for the development of both devices. The overall cost could be brought down

even more because some components were purchased in extras such as the GPS, resistors, and

capacitors.

Table 6: Project Expenditures

In addition to the overall project expenditures, the BOM and price per component can be seen in

Error! Reference source not found.. As seen in the table below, the overall price of each unit is

Product Quantity Price/Unit Subtotal Total (Taxes+Shipping)

Cellular Module 2 65.00 130.00 139.56

LCD Display x2 1 16.99 16.99 16.99

SIM Card 2 5.50 11.00 21.41

LT1116 2 10.40 20.80 20.80

LTC1968 2 11.91 23.82 31.81

Demo Board V1.0 5 17.14

Demo Board V1.0 Parts 128.31

Mouser Order 72.68

Batteries 2 26.64

PCB V1.0 55.06

Final PCB Parts 127.70

PCB V1.1 12.14

Max 7C GPS 2 73.47

PCB V1.2 22.14

Digikey Order 6 73.75

Digikey Order 5 40.08

Total 879.68

27

only around $200. This meets the goal of developing two devices under $1000. In addition to the

overall price per unit, a two-channel function generator was also purchased through Mr. Jason

Sternhagen to test the devices during the Senior Design Expo. This came out of the $4000 budget

to purchase test equipment and would also prove useful in testing the devices without having to

run the ALB’s in the power lab. Not included in the budget expenditure this year, the same exact

Rogowski coils that were purchased 3 years ago were used again for this year. The price per

Rogowski coil is $118.29 which adds on to the cost of the BOM. This brings the overall cost per

device up to around $310.

Table 7: BOM and Individual Component Cost

Item Qty Reference(s) Value LibPart Price ($)

1 1 A1 Botletics SIM7000 MCU_Module:Arduino_UNO_R3 65.00

2 10 C1, C9, C10, C17, C22, C23, C25, C27, C30, C33 0.1u Device:C 0.44

3 3 C2, C4, C13 10u Device:C 0.35

4 5 C3, C24, C26, C28, C31 0.01u Device:C 0.31

5 3 C5, C6, C20 2.2u Device:C 0.30

6 4 C7, C8, C14, C16 4.7u Device:C 0.66

7 2 C11, C12 22u Device:C 0.37

8 3 C15, C21, C29 1u Device:C 0.31

9 2 C18, C19 10p Device:C 0.22

10 1 C32 10n Device:C 0.18

11 2 D1, D2 BZV55C2V4 Diode:BZV55C2V4 0.39

12 2 D3, D4 LED Device:LED 0.36

13 1 D5 BAT42WS-E3-08 Diode:BAT42W-V 0.25

14 4 H1, H2, H3, H4 MountingHole Mechanical:MountingHole 0.00

15 1 J1 Conn_01x04 Connector_Generic:Conn_01x04 0.00

16 1 J2 Conn_01x05 Connector_Generic:Conn_01x05 0.00

17 1 J3 USB_C_Receptacle Connector:USB_C_Receptacle 1.72

18 1 J4 Conn_01x02 Connector_Generic:Conn_01x02 0.00

19 6 J5, J7, J10, J11, J12, J13 Conn_01x01 Connector_Generic:Conn_01x01 0.00

20 1 J6 Conn_Coaxial Connector:Conn_Coaxial 10.72

21 1 J8 Conn_Coaxial Connector:Conn_Coaxial 1.29

22 1 J9 Conn_01x01 :Conn_01x01_1 0.00

23 1 J14 Conn_01x02 Connector_Generic:Conn_01x02 0.00

24 1 L1 4.7u Device:L 2.05

25 1 L3 27n Device:L 0.23

26 3 R1, R3, R21 10k Device:R 1.74

27 1 R2 330k Device:R 0.34

28 1 R4 1.13k Device:R 0.03

29 1 R5 16k Device:R 0.03

30 1 R6 1.18k Device:R 0.02

31 1 R7 10 Device:R 0.21

32 3 R8, R14, R15 100k Device:R 0.06

33 4 R9, R16, R17, R20 1k Device:R 0.10

34 1 R10 2k Device:R 0.10

35 1 R11 1M Device:R 0.03

36 2 R12, R13 5.1k Device:R 0.05

37 2 R18, R19 330 Device:R 0.04

38 1 SW1 SW_SPST Switch:SW_SPST 0.94

39 1 U1 TPS613222ADBV Regulator_Switching:TPS613222ADBV 1.16

40 1 U2 TL084 Amplifier_Operational:TL084 0.52

41 1 U3 max1673esa+T PhaseID:max1673esa+T 5.64

42 1 U4 LTC1968CMS8-TRPBF PhaseID:LTC1968CMS8-TRPBF 12.05

43 1 U5 AP7361C-33ER Regulator_Linear:AP7361C-33E 0.63

44 1 U7 BQ24072RGT Battery_Management:BQ24072RGT 3.61

45 1 U8 TM4C1233H6PM MCU_Texas:TM4C1231H6PM 13.65

46 1 U10 MAX-8C RF_GPS:MAX-8C 21.00

47 1 Y1 ABM3-16.000MHZ-D2Y-T Device:Crystal 0.58

48 2.5Ah Battery Li-ion Battery 14.95

49 931-1144-ND RF Antenna 15.32

50 HM3998-ND Case 16.18

TOTAL 194.12

28

7. Conclusions
The system fulfilled not only the objectives set out to solve the problem of being able to identify

high voltage conductors, but also to the standards of industry workers that would be prospective

end-users of the devices. With the inclusion of cellular communication, working distance for the

devices is essentially infinite so long as an adequate signal can be obtained. High accuracy both

with current magnitudes (<3A error) and phase (<0.1 degrees error) can be obtained when large

currents are being measured (>100A). While unbalanced current phases will cause displayed

phases to be slightly off from 120 degrees, this is not enough to prevent the more important danger

of conductors being improperly identified. Finally, the GPS outdoors took around 35 seconds from

starting up to fully lock on to enough satellites to provide the PPS. The biggest downfall of this

device however is that if it is used indoors, it can sometimes take up to 15 minutes to fully lock on

to the satellites even when near a window. This is clearly a limitation of the current design.

Future Work
The newest improvement to the system, the inclusion of cellular communication instead of RF

(Radio Frequency), extends the range of the devices to essentially infinite. As such, no future

improvements are intended to the devices themselves, however a future update with a proprietary

API instead of DWEET.io could be done. Perhaps researching a better way to get the GPS PPS

faster indoors could be done for future work.

8. References

[1] M. Belisario, N. Mahowald and J. Winter, "High Voltage Distribution Phase Identifier Phase

II," 2021.

[2] Texas Instruments, "Active Integrator for Rogowski Coil Reference Design With Improved

Accuracy for Relays and Breakers," 2016.

9. Appendix

Operation Instructions
1. The first step in operating the Conductor Identifier is to make sure that the SIM cards

have data loaded onto them. Go to Hologram.io and login and select the organization

“Conductor Identifier.”

2. Next step is to make sure that both devices have data and are activated. If they do not

have data, you will need to go to the “billing” tab and add balance then activate the cards.

3. The cards should be activated within around 10 minutes and the devices can be used.

4. For best operating conditions, the devices should be used outside. If this is not possible,

place each device close to a window.

5. For charging the devices, plug in any USB-C connector to charge.

6. Once devices are charged, turn them on and wait for the GPS and wrap the Rogowski coil

around the conductor.

29

Microcontroller Code:
#include "TM4C123.h"

#include <math.h>

#include <stdbool.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#define pin0 0x01

#define pin1 0x02

#define pin2 0x04

#define pin3 0x08

#define pin4 0x10

#define pin5 0x20

#define pin6 0x40

#define pin7 0x80

#define CLOCK_GPIOA 0x01

#define CLOCK_GPIOB 0x02

#define CLOCK_GPIOC 0x04

#define CLOCK_GPIOD 0x08

#define CLOCK_GPIOE 0x10

#define CLOCK_GPIOF 0x20

#define Row1 0x00

#define Row2 0x40

#define Row3 0x14

#define Row4 0x54

//#define GPSTESTING

#define INITDELAYS

//#define SINGLEDEVICETESTING

//#define PCBTESTING

void I2C3_init(void);

void I2C_Send(char byte);

void Receive_LCD_Address(void);

void LCD_Send(char byte);

void SendLCDString(char string[]);

void Send_LCD_Command(char command);

void Write_Character(char character);

void InitializeLCD(void);

void PrintPhaseData(void);

void PrintCurrentData(void);

30

void PrintFrequencyData(void);

void PrintLCDData(void);

void PrintLowSignalErrorMessage(void);

void PrintProbeErrorMessage(void);

void InitializationSequence(void);

void GPIO_PWRKEY_init(void);

void ADC0_init(void);

void UART0_init(void);

void UART1_init(void);

void UART4_init(void);

void GPIO_inits(void);

void PPS_GPIO_init(void);

void ZC_GPIO_init(void);

void ZC_Timer_init(void);

void HeartBeatTimerInit(void);

void MaskMeasurementInterrupts(void);

void UnmaskMeasurementInterrupts(void);

void ConvertADCReadingtoCurrent(void);

void ADC0_TakeSamples(void);

void ProcessZCTimingData(void);

void TurnOnSIM7000(void);

void delayMs(unsigned long counter);

void TestLocalComs(void);

void echoATcom(void);

void sendATcom(void);

void rsfPutChar (char c);

void ReceiveFromGPS(void);

void ReceiveFromSIM7000(void);

void UpdateTime(void);

void WaitTilUART1ReceiveNotBusy(void);

void WaitTilUART1NotBusy(void);

void WaitTilUART4ReceiveNotBusy(void);

void WaitTilUART4NotBusy(void);

void DesyncDeviceDWEETing(void);

void UpdatePulledFromAPIVars(char APIName[]);

void PullAPIData(char DweetThingName[]);

void SendDWEET(int DWEETData);

void SendToSIM7000(char SendBuf[]);

void SendNumDeviceOnDWEET(char DweetThingName[],int NumOn);

void HTTP_init(void);

31

int FindGPSMessage(char MessageName[],int MessageNameSize);

void PrintGPSREADING(int n);

void CompareData(void);

void ConfigureGPSMessages(void);

void UpdateCloudData(char DweetThingName[]);

int ParseSIM7000ForString(char SearchString[],int SearchStringSize);

int ReturnVariableData(char APIVariableName[], int APIVariableNameLength);

int FindNumDevicesInitialized(char DweetThingName[]);

void AddVariableToSend(char SendBuffer[], char VariableName[], int VariableData);

void PopulateHeader(void);

void PopulateClassID(int CommandClass, int ID);

void PopulatePayloadLength(int PaySize);

void PopulateTargetMSG(int MSGClass, int MSGID);

void PopulateDisableUARTPorts(bool Disable);

void PopulateRatePayload(void);

void PopulateChecksum(int PayloadEnd);

void SendToNEO6GPS(char SendBuf[]);

char PPSResetDelayAPIVar[]="ResetDelay";

char TimeStampAPIVar[]="TimeStamp";

char ZeroCrossingAPIVar[]="ZCTime";

char CurrentAPIVar[]="CurrentReading";

char DesyncVariable[]="NumDevicesInitialized";

char Device1DWEETname[] = "phaseid1";

char Device2DWEETname[]= "phaseid2";

int OOFThreshold = 15; //1.0 degree of phase

shift

int ParallelCircuitThreshold = 100; //max current difference for parallel lines

int CurrentErrorThreshold = 400; //min current for definitive reading

char GPSCommand[40];

int TESTSTRING[60];

char READING[120];

char SIM7000Reading[400];

int GPSIndex = 0;

int SIM7000Index = 0;

unsigned volatile int test_time = 233012;

unsigned volatile int test_zc_time = 50000000;

unsigned volatile int LOCAL_TIME = 0;

unsigned volatile int PULLED_TIME = 0;

32

unsigned volatile int LOCAL_CURRENT = 0;

unsigned volatile int PULLED_CURRENT = 0;

unsigned volatile int LOCAL_ZC_TIMING[60] = {0};

int ZCTimingIndex = 0;unsigned volatile int PULLED_ZC_TIMING = 0;

int MeasurementsPerSec = 5;

int PPSResetDelay[60]= {0}; //Stores Difference between expected and actual time PPS resets

int MeasurementDelay[40]={0};

int TestInt = 0;

int DeviceIdentifier = 0;

bool TimeReadyToUpdate = false;

bool NewTimeStampReceived = false;

bool FIRST_PPSRECEIVED = false;

float Frequency = 0;

int Phasematch = 2;

float PhaseDeg = 0;

bool CurrentMatch = false;

//int ErrorState = 1; //0 = Normal Operation, 1=Current probe Error,2=GPS/Cellular

error,3 or 4=Error message printed

bool LOWCURRENTERROR = false;

bool LOWSIGNALERROR = false;

bool HEARTBEAT = false;

bool NEW_PPSRECEIVED = false;

unsigned volatile int ADC0_data = 0;

// LCD IO EXPANDER (MSB->LSB)

// 0000 0 0 0 0

// DDDD X E RW RS

// LCD ROW ADDRESSES

// Row 1 = 0x00

// Row 2 = 0x40

// Row 3 = 0x14

// Row 4 = 0x54

//INPUTS

//PE2 = Current RMS (ADC1)

//PA5 = PPS waveform (GPIOA Interrupt)

//PC6 = ZC waveform (WT1CCP0)

//OUTPUTS

//PF1 = PWRKEY

33

//UARTS

//UART1 for SIM7000

//PB0 = Rx, PB1 = Tx

//UART4 for NEO6x GPS

//PC4 = Rx, PC5 = Tx

//I2C

//I2C3 for LCD Display

//PD0 = SCL, PD1 = SDA

//Peripherals//

//SIM7000

//PF1->6

//PB0->10,PB1->11

//5V and VBAT->3.3V, GND->GND

void UART4_Handler(void){

int i=0;

ReceiveFromGPS();

if(NewTimeStampReceived == true){

UpdateTime();

for(i=0;i<119;i++)

READING[i]=0;

NewTimeStampReceived=false;

if(LOCAL_TIME%10==0){

//GPIOA->IM |= 0x20;

//UART4->IM &= ~0x10;

}

}

UART4->ICR |= 0x10;

}

void UART1_Handler(void){

ReceiveFromSIM7000();

UART1->ICR |= 0x10;

}

void GPIOA_Handler(void){

PPSResetDelay[TestInt] = WTIMER1->TAV-50000000;

WTIMER1->TAV |= 0xFFFFFFFF; //Reset TimerA0 to 0 whenever PPS occurs

TestInt++;

if(TestInt>60){

34

for(TestInt=0;TestInt<60;TestInt++)

PPSResetDelay[TestInt]=0;

TestInt=0;

}

delayMs(1);

if(LOCAL_TIME%10==0){

ZCTimingIndex=0;

WTIMER1->ICR |= 0x4; //Clear Capture interrupt from timer 0

WTIMER1->IMR |= 0x4; //Unmask Capture Interrupt from timer0A

GPIOA->IM &= ~0x20;

}

if(FIRST_PPSRECEIVED == false)

FIRST_PPSRECEIVED = true;

NEW_PPSRECEIVED=true;

//NVIC_ClearPendingIRQ(GPIOA_IRQn);

GPIOA->ICR |= 0x20; //Clear GPIOA interrupt

}

void WTIMER1A_Handler(void){

MeasurementDelay[ZCTimingIndex]= WTIMER1->TAV;

LOCAL_ZC_TIMING[ZCTimingIndex] = WTIMER1->TAR;

ZCTimingIndex++;

if(ZCTimingIndex > 20){

//UART4->IM |= 0x10;

WTIMER1->IMR &= ~0x4;

TimeReadyToUpdate = true;

}

WTIMER1->ICR|= 0x4; //Clear Capture interrupt from timer0A

}

void WTIMER2A_Handler(void){

// if(FIRST_PPSRECEIVED == false)

// Send_LCD_Command(0x01);

if(HEARTBEAT){

Send_LCD_Command(0x80|Row4+18);

SendLCDString("<3");

HEARTBEAT = false;

}

else{

35

Send_LCD_Command(0x80|Row4+18);

SendLCDString("__");

HEARTBEAT = true;

}

if(NEW_PPSRECEIVED || GPIOA->RIS == 0x20){

Send_LCD_Command(0x80|Row4+17);

SendLCDString(".");

NEW_PPSRECEIVED=false;

}

else{

Send_LCD_Command(0x80|Row4+17);

SendLCDString("_");

}

WTIMER2->TAV=0x0;

WTIMER2->ICR|=0x10;

}

int main(void){

InitializationSequence();

ZCTimingIndex=0;

while(1){

ADC0_TakeSamples();

ConvertADCReadingtoCurrent();

delayMs(250);

if(TimeReadyToUpdate==true){

MaskMeasurementInterrupts();

if(DeviceIdentifier==1){

UpdateCloudData(Device1DWEETname);

delayMs(4000);

UpdatePulledFromAPIVars(Device2DWEETname);

}

else{

UpdateCloudData(Device2DWEETname);

delayMs(4000);

UpdatePulledFromAPIVars(Device1DWEETname);

}

CompareData();

PrintLCDData();

LOCAL_TIME=1;

TimeReadyToUpdate=false;

36

UnmaskMeasurementInterrupts();

}

}

}

void PopulateHeader(void){

GPSCommand[0] = 0xB5; GPSCommand[1] = 0x62; //Standard UBX

Header

}

void PopulateClassID(int CommandClass, int ID){

GPSCommand[2] = CommandClass; GPSCommand[3] = ID; //Class,ID for

CFG command

}

void PopulatePayloadLength(int PaySize){ //Payload Length for

enabling/disabling GPS ports

GPSCommand[4] = PaySize; GPSCommand[5] = 0x0;

}

void PopulateTargetMSG(int MSGClass, int MSGID){

GPSCommand[6] = MSGClass; GPSCommand[7] = MSGID; //Target NMEA message Class

and ID

}

void PopulateDisableUARTPorts(bool Disable){

if(Disable == true){

GPSCommand[8] = 0x1; //DDC (I2C) port enabled

GPSCommand[9] = 0x0; //UART1 port disabled

GPSCommand[10] = 0x0; //UART2 port disabled

GPSCommand[11] = 0x0; //USB port disabled

GPSCommand[12] = 0x1; //SPI port enabled

GPSCommand[13] = 0x1; //6th port enabled?

}

else{

GPSCommand[8] = 0x1; //DDC (I2C) port enabled

GPSCommand[9] = 0x1; //UART1 port enabled

GPSCommand[10] = 0x1; //UART2 port enabled

GPSCommand[11] = 0x1; //USB port enabled

GPSCommand[12] = 0x1; //SPI port enabled

GPSCommand[13] = 0x1; //6th port enabled?

}

}

void PopulateChecksum(int CheckSumStart){

int CK_A=0;

int CK_B=0;

int i;

for(i=2;i<CheckSumStart;i++){

37

CK_A = CK_A+GPSCommand[i];

CK_B = CK_B+CK_A;

}

GPSCommand[CheckSumStart] = CK_A;

GPSCommand[CheckSumStart+1] = CK_B;

GPSCommand[CheckSumStart+2] = '\r';

GPSCommand[CheckSumStart+3] = '\n';

}

void PopulateRatePayload(void){

GPSCommand[6] = 0x10;

GPSCommand[7] = 0x27;

GPSCommand[8] = 0x01;

GPSCommand[9] = 0x00;

GPSCommand[10]= 0x01;

GPSCommand[11]= 0x00;

}

void TurnOnSIM7000(void){

GPIOF->DATA &= (~pin1);

delayMs(20000);

GPIOF->DATA |= (pin1);

delayMs(7000);

}

void delayMs(unsigned long counter){

unsigned long i = 0;

unsigned long j = 0;

for(i = 0; i < counter; i++){

for(j=0;j<3180;j++);

}

}

void ADC0_TakeSamples(void){

ADC0->PSSI |= 0x08; //Start A Sampling on SS3

while((ADC0->RIS & 0x08)==0){}; //Wait on status of SS3

 ADC0_data = (ADC0->SSFIFO3 & 0xFFF); //Load FIFO into data variable;

ADC0->ISC = 0x08; // clear status flag & go again

}

void ConvertADCReadingtoCurrent(void){

LOCAL_CURRENT = ADC0_data*(3.3/4096)*(2160); //3.3V/4096 bits ADC, 1000Amps/0.6V

rogowski output, 2160A/V observed

if(LOCAL_CURRENT < CurrentErrorThreshold)

38

LOWCURRENTERROR = true;

else

LOWCURRENTERROR = false;

}

void TestLocalComs(void){

int i;

char com[] = "Test\n";

int size = sizeof(com);

for(i = 0; i<size; i++){

while((UART0->FR & 0x8) != 0); // wait until UART is not busy

UART0->DR = com[i];

UART1->DR = com[i];

}

}

void echoATcom(void){

while((UART0->FR & 0x8) != 0); // wait until UART is not busy

UART0->DR = UART1->DR;

//char payload = UART1->DR;

//SendLCDString(payload);

}

void sendATcom(void){

int i;

char com[] = "AT";

int size = sizeof(com);

for(i = 0; i<size; i++){

WaitTilUART1NotBusy(); // wait until UART is not busy

UART1->DR = com[i];

UART0->DR = com[i];

//UART0->DR = UART4->DR;

}

}

void ReceiveFromGPS(void){

WaitTilUART4NotBusy();

READING[GPSIndex] = UART4->DR;

if(READING[GPSIndex]==0x0A){

GPSIndex=0;

NewTimeStampReceived = true;

}

else

GPSIndex++;

}

39

void ReceiveFromSIM7000(void){

WaitTilUART1ReceiveNotBusy();

SIM7000Reading[SIM7000Index] = UART1->DR;

if(SIM7000Reading[SIM7000Index]==0x0A){

SIM7000Index=0;

}

else

SIM7000Index++;

}

void UpdateTime(void){

int i,j,GPSpos;

LOCAL_TIME = 0;

GPSpos=FindGPSMessage("GPZDA",5);

j=3;

for(i=0;i<4;i++){

LOCAL_TIME+=(READING[GPSpos+3]-48)*pow(10,j);

GPSpos++;j--;

}

}

void PrintGPSREADING(int n){

int i;

char GPSSTRING[80];

for(i=0; i<sizeof(GPSSTRING); i++){

GPSSTRING[i] = READING[n];

n++;

}

Send_LCD_Command(0x01); //Clear LCD

Send_LCD_Command(0x80|Row1);

SendLCDString(GPSSTRING);

delayMs(3000);

}

int FindGPSMessage(char MessageName[],int MessageNameSize){

int i;

int j=0;

40

for(i=0; i<sizeof(READING); i++){

if(j == (MessageNameSize))

return i;

else if(READING[i]==MessageName[j]){

j++;

}

else

j=0;

}

return -1;

}

void SendToSIM7000(char SendBuf[]){

int i = -1;

strcat(SendBuf,"\r\n");

do{

i++;

WaitTilUART1NotBusy();

UART1->DR = SendBuf[i];

}while(SendBuf[i] != '\n');

delayMs(500);

}

void UpdatePulledFromAPIVars(char APIName[]){

PullAPIData(APIName);

PULLED_TIME = ReturnVariableData(TimeStampAPIVar,

sizeof(TimeStampAPIVar));

PULLED_ZC_TIMING = ReturnVariableData(ZeroCrossingAPIVar,

sizeof(ZeroCrossingAPIVar));

PULLED_CURRENT = ReturnVariableData(CurrentAPIVar,

sizeof(CurrentAPIVar));

}

void SendToNEO6GPS(char SendBuf[]){

int i = -1;

do{

i++;

WaitTilUART4NotBusy();

UART4->DR = SendBuf[i];

}while(SendBuf[i] != '\n');

delayMs(50);

}

void SendDWEET(int DWEETData){

char DWEETDataBuf[5];

char DweetBuf[65] = "AT+HTTPPARA=\"url\",dweet.io/dweet/quietly/for/phaseid?data=";

41

char DweetAction[] = "AT+HTTPACTION=1";

sprintf(DWEETDataBuf, "%d", DWEETData);

strcat(DweetBuf,DWEETDataBuf);

SendToSIM7000(DweetBuf);

SendToSIM7000(DweetAction);

}

void UpdateCloudData(char DweetThingName[]){

char DweetBuf[120] = "AT+HTTPPARA=\"url\",dweet.io/dweet/quietly/for/";

char DweetAction[] = "AT+HTTPACTION=1";

strcat(DweetBuf, DweetThingName);

strcat(DweetBuf, "?");

AddVariableToSend(DweetBuf,TimeStampAPIVar,LOCAL_TIME);

AddVariableToSend(DweetBuf,ZeroCrossingAPIVar,LOCAL_ZC_TIMING[1]);

AddVariableToSend(DweetBuf,CurrentAPIVar,LOCAL_CURRENT);

//AddVariableToSend(DweetBuf,PPSResetDelayAPIVar,PPSResetDelay);

SendToSIM7000(DweetBuf);

SendToSIM7000(DweetAction);

delayMs(500);

}

void PullAPIData(char DweetThingName[]){

char DweetBuf[65] = "AT+HTTPPARA=\"url\",dweet.io/get/latest/dweet/for/";

char DweetAction[] = "AT+HTTPACTION=0";

char CheckDweetData[] = "AT+HTTPREAD";

strcat(DweetBuf, DweetThingName);

SendToSIM7000(DweetBuf);

SendToSIM7000(DweetAction);

delayMs(4000); //Extra Delay for server to respond

SendToSIM7000(CheckDweetData);

delayMs(200); //Extra Delay to load response

}

int ParseSIM7000ForString(char SearchString[],int SearchStringSize){

int i;

int j=0;

for(i=0; i<(sizeof(SIM7000Reading)/sizeof(char)); i++){

if(j == (SearchStringSize)-2)

42

return i;

else if(SIM7000Reading[i]==SearchString[j]){

j++;

}

else

j=0;

}

return -1;

}

int ReturnVariableData(char APIVariableName[], int APIVariableNameLength){

char DataBuffer[15];

int VariableValue, i = 0;

int VariableDataIndex = ParseSIM7000ForString(APIVariableName,

APIVariableNameLength)+3;

if(VariableDataIndex != -1){

while(SIM7000Reading[VariableDataIndex] != ',' && SIM7000Reading[VariableDataIndex] !=

'}'){

DataBuffer[i] = SIM7000Reading[VariableDataIndex];

VariableDataIndex++;

i++;

};

VariableValue = atoi(DataBuffer);

}

else VariableValue = -1;

return VariableValue;

}

void AddVariableToSend(char SendBuffer[], char VariableName[], int VariableData){

char ConcatDataBuff[20];

strcat(SendBuffer,"&");

strcat(SendBuffer,VariableName);

strcat(SendBuffer,"=");

sprintf(ConcatDataBuff,"%d",VariableData);

strcat(SendBuffer,ConcatDataBuff);

}

void CompareData(void){

int timedifferenceRaw,currentdifference,i,FrequencySum;

Phasematch = 2;

CurrentMatch = false;

PhaseDeg=0;Frequency=0;FrequencySum=0;

for(i=0;i<(ZCTimingIndex-1);i++){

43

FrequencySum += (LOCAL_ZC_TIMING[i+1]-LOCAL_ZC_TIMING[i]);

}

//Frequency = 50000000/(Frequency/ValidDifferences);

Frequency = 50000000/((float)FrequencySum/(ZCTimingIndex-1));

//Timestamps match

#ifndef SINGLEDEVICETESTING

if(LOCAL_TIME-PULLED_TIME == 0){

#endif

LOWSIGNALERROR = false;

timedifferenceRaw = LOCAL_ZC_TIMING[1] - PULLED_ZC_TIMING;

currentdifference = LOCAL_CURRENT - PULLED_CURRENT;

//PhaseDeg = (((float)timedifferenceRaw/50000000)*(Frequency*360));

 //(frequency*360)/50000000)

//(frequency*360)/Clockrate

PhaseDeg = (float)timedifferenceRaw/2314;

//if(abs((int)PhaseDeg) > 180) //Ensures 120 increments

// PhaseDeg = PhaseDeg-360;

if(abs((int)PhaseDeg) < OOFThreshold){

Phasematch = 0;

}

else if(PhaseDeg < OOFThreshold){

Phasematch = -1;

}

else if(PhaseDeg > OOFThreshold){

Phasematch = 1;

}

if(abs(currentdifference) < ParallelCircuitThreshold)

CurrentMatch = true;

#ifndef SINGLEDEVICETESTING

}

//Timestamps dont match

else

LOWSIGNALERROR = true;

#endif

}

void WaitTilUART1ReceiveNotBusy(void){

while((UART1->FR & 0x20) != 0);

}

void WaitTilUART4ReceiveNotBusy(void){

while((UART4->FR & 0x20) != 0);

}

void WaitTilUART1NotBusy(void){

44

while((UART1->FR & 0x8) != 0);

}

void WaitTilUART4NotBusy(void){

while((UART4->FR & 0x8) != 0);

}

//Bite-sized commands sent in nibble pairs

void Send_LCD_Command(char command){

char UpperNibble = command & 0xF0;

char LowerNibble = (command & 0x0F)<<4;

LCD_Send(UpperNibble);

LCD_Send(LowerNibble);

delayMs(8);

}

void Write_Character(char character){

char UpperNibble = (character & 0xF0) | 0x1;

char LowerNibble = ((character & 0x0F)<<4) | 0x1;

LCD_Send(UpperNibble);

LCD_Send(LowerNibble);

delayMs(1);

}

void LCD_Send(char byte){

I2C_Send(byte);

I2C_Send(byte | 0x0C);

delayMs(1);

I2C_Send(byte | 0x08);

delayMs(1);

}

void I2C_Send(char byte){

I2C3->MDR = byte;

I2C3->MCS = 0x7;

while(I2C3->MCS &0x1000000);

}

void SendLCDString(char string[]){

int i=0;

while(string[i]!='\0'){

Write_Character(string[i]);

i++;

}

}

void PrintPhaseData(void){

char PhaseDegBuf[5];

char PhaseDisplay[10] = "Deg:";

45

sprintf(PhaseDegBuf,"%0.2f", PhaseDeg);

strcat(PhaseDisplay,PhaseDegBuf);

SendLCDString(PhaseDisplay);

Send_LCD_Command(0x80|Row2);

switch(Phasematch){

case 0:

SendLCDString("Phase:MATCH"); break;

case -1:

SendLCDString("Phase:LAGGING"); break;

case 1:

SendLCDString("Phase:LEADING"); break;

default:

SendLCDString("Phase:ERROR"); break;

}

}

void PrintCurrentData(void){

char CurrentDataBuf[5];

char CurrentDisplay[10]="LocA:";

char CurrentDisplay2[10]="PulA:";

sprintf(CurrentDataBuf, "%0.1f", (float)LOCAL_CURRENT/10);

strcat(CurrentDisplay,CurrentDataBuf);

sprintf(CurrentDataBuf, "%0.1f", (float)PULLED_CURRENT/10);

strcat(CurrentDisplay2,CurrentDataBuf);

Send_LCD_Command(0x80|Row3);

SendLCDString(CurrentDisplay);

Send_LCD_Command(0x80|Row3+10);

SendLCDString(CurrentDisplay2);

Send_LCD_Command(0x80|Row4);

if(CurrentMatch)

SendLCDString("Line Match:TRUE");

else

SendLCDString("Line Match:FALSE");

}

void PrintFrequencyData(void){

char FreqDataBuf[4];

char FreqDisplay[10]="Freq:";

sprintf(FreqDataBuf, "%0.2f", Frequency);

strcat(FreqDisplay,FreqDataBuf);

46

Send_LCD_Command(0x80|Row1+10);

SendLCDString(FreqDisplay);

}

void PrintLCDData(void){

Send_LCD_Command(0x01); //Clear LCD

Send_LCD_Command(0x80|Row1);

if(LOWSIGNALERROR == false && LOWCURRENTERROR == false){

PrintPhaseData();

PrintCurrentData();

PrintFrequencyData();

}

else if(LOWCURRENTERROR==true)

PrintProbeErrorMessage();

else if(LOWSIGNALERROR ==true)

PrintLowSignalErrorMessage();

else

SendLCDString("UNKNOWN ERROR");

}

void PrintLowSignalErrorMessage(void){

Send_LCD_Command(0x01); //Clear LCD

Send_LCD_Command(0x80|Row1);

SendLCDString("No Timestamp Match!");

Send_LCD_Command(0x80|Row2);

SendLCDString("Low GPS/Cell Signal!");

}

void PrintProbeErrorMessage(void){

Send_LCD_Command(0x01); //Clear LCD

Send_LCD_Command(0x80|Row1);

SendLCDString("No Current Reading!");

Send_LCD_Command(0x80|Row2);

SendLCDString("Adjust Probes!");

}

void UART0_init(void){

SYSCTL->RCGCUART |= 0x1; // enable clock for UART Module 0

SYSCTL->RCGCGPIO |= CLOCK_GPIOA; // set clock for GPIO Port A

delayMs(1);

GPIOA->DEN |= (pin0 + pin1); // digitally enable PA0 and PA1 (A0=Rx, A1=Tx)

GPIOA->AFSEL |= (pin0 + pin1); // enable PA0 and PA1 in alternate function mode

GPIOA->PCTL |= 0x00000011; // set PA0 and PA1 to alternate UART function

UART0->CTL &= ~0x1; // disable UART before making changes

47

UART0->IBRD = 325; // calculated for 9600 baud --- 50MHz/(16*9600) =

325.5208

UART0->FBRD = 33; // calculated with int(0.5208*64+0.5) = 33.8312 --- round

down, gives 33

UART0->LCRH |= 0x60; // set configuration

UART0->CC &= ~0xF; // set main clock as UART0 clock

UART0->CTL |= 0x301; // enable UART0

delayMs(1);

}

void InitializationSequence(void){

//For LCD Display

I2C3_init();

InitializeLCD();

//For USB, SIM7000, GPS UARTS

UART0_init();

UART1_init();

UART4_init();

//Current RMS-DC value

ADC0_init();

//PPS and Zero Crossing

PPS_GPIO_init();

ZC_GPIO_init();

ZC_Timer_init();

//GPS NMEA Messages

ConfigureGPSMessages();

delayMs(10000);

//SIM7000 HTTP connection

HeartBeatTimerInit();

Send_LCD_Command(0x01);

GPIOA->IM |= pin5;

while(FIRST_PPSRECEIVED==false){

Send_LCD_Command(0x80|Row1);

SendLCDString("WaitingforPPS...");

delayMs(5000);

}

GPIOA->IM &= ~pin5;

//Turn on SIM7000

GPIO_PWRKEY_init();

TurnOnSIM7000();

HTTP_init();

48

//SendLCDString(SIM7000Reading);

DeviceIdentifier=2;

//Differentiate devices based on startup order

//DesyncDeviceDWEETing();

delayMs(2000);

//UART4->IM |= 0x00;

GPIOA->IM |= pin5; //Unmask interrupt for

PA5

WTIMER1->IMR |= 0x4; //Unmask ZC interrupt

UART1->IM |= 0x10; //Unmask Cellular interrupt

UART4->IM |= 0x10; //Unmask GPS RX interrupt

}

void I2C3_init(void){

SYSCTL->RCGCGPIO |= CLOCK_GPIOD; //Clock to Port D

 SYSCTL->RCGCI2C |= 0x8; //I2C3 Clock

delayMs(1);

GPIOD->DEN |= (pin0+pin1);

GPIOD->AFSEL |= (pin0+pin1); //PD0(SCL) PD1(SDA)

GPIOD->PCTL |= 0x00000033; //I2C3 on Pins 0 and 1

GPIOD->ODR |= pin1;

I2C3->MCR |= 0x10;

I2C3->MTPR |= 0x9;

I2C3->MSA = 0x3F << 1;

}

void InitializeLCD(void){

delayMs(1);

LCD_Send(0x30);

LCD_Send(0x30);

LCD_Send(0x30); //3x Special Startup Commands

LCD_Send(0x20);

Send_LCD_Command(0x28); //2 Line, 5x7 font

Send_LCD_Command(0x08); //On

Send_LCD_Command(0x01); //Clear Display

Send_LCD_Command(0x06); //Increment Entry Mode

Send_LCD_Command(0x0C);

Send_LCD_Command(0x02);

Send_LCD_Command(0x80|Row1);

SendLCDString("LCD Initialized!");

#ifndef INITDELAYS

49

delayMs(400);

#endif

}

//SIM7000

void UART1_init(void){

SYSCTL->RCGCUART |= 0x2; // enable clock for UART Module 1

SYSCTL->RCGCGPIO |= CLOCK_GPIOB; // set clock for GPIO Port B

GPIOB->DEN |= (pin0 + pin1); // digitally enable PB0 and PB1 (B0=Rx, B1=Tx)

GPIOB->AFSEL |= (pin0 + pin1); // enable PB0 and PB1 in alternate function mode

GPIOB->PCTL |= 0x00000011; // set PB0 and PB1 to alternate UART function

UART1->CTL &= ~0x1; // disable UART before making changes

UART1->IBRD = 325; // calculated for 9600 baud --- 50MHz/(16*9600) =

325.5208

UART1->FBRD = 33; // calculated with int(0.5208*64+0.5) = 33.8312 --- round

down, gives 33

UART1->LCRH |= 0x60; // set configuration

UART1->CC &= ~0xF; // set main clock as UART1 clock

UART1->CTL |= 0x301; // enable UART1

delayMs(1);

//UART1->IM |= 0x10; //enable RX interrupt

UART1->IM &= ~0x10; //enable RX interrupt

NVIC_EnableIRQ(UART1_IRQn); //enable UART4 intterupt vector

NVIC_SetPriority(UART1_IRQn,1);

Send_LCD_Command(0x80|Row2);

SendLCDString("Cell UART Started!");

#ifndef INITDELAYS

delayMs(1000);

#endif

}

//GPS

void UART4_init(void){

SYSCTL->RCGCUART |= 0x10; // enable clock for UART Module 4

SYSCTL->RCGCGPIO |= CLOCK_GPIOC; // set clock for GPIO Port C

GPIOC->DEN |= (pin4 + pin5); // digitally enable PC4 and PC5 (C4=Rx, C5=Tx)

GPIOC->AFSEL |= (pin4 + pin5); // enable PC4 and PC5 in alternate function mode

GPIOC->PCTL |= 0x00110000; // set PC4 and PC5 to alternate UART function

50

UART4->CTL &= ~0x1; // disable UART before making changes

UART4->IBRD = 325; // calculated for 9600 baud --- 50MHz/(16*9600) =

325.5208

UART4->FBRD = 33; // calculated with int(0.5208*64+0.5) = 33.8312 --- round

down, gives 33

UART4->LCRH |= 0x60; // set configuration

UART4->CC &= ~0xF; // set main clock as UART4 clock

//UART4->LCRH |= 0x70;

UART4->CTL |= 0x301; // enable UART4

delayMs(1);

//UART4->IM |= 0x10; //enable RX interrup

UART4->IM &= ~0x10;

NVIC_EnableIRQ(UART4_IRQn); //enable UART4 intterupt vector

NVIC_SetPriority(UART4_IRQn,2);

Send_LCD_Command(0x80|Row3);

SendLCDString("GPS UART Initialized");

#ifndef INITDELAYS

delayMs(1000);

#endif

}

void ADC0_init(void){

SYSCTL->RCGCADC |= 0x01; // clock to Port E

SYSCTL->RCGCGPIO |= CLOCK_GPIOE; // ADC0

delayMs(3);

GPIOE->AFSEL |= pin2; // PE2 Alternate function

GPIOE->DEN &=~pin2; // Clearing, do NOT want digital for A2D

GPIOE->AMSEL |= pin2; // select analog mode

ADC0->ISC |= 0x08; // clear status flag-- can now access ADC

regs w/out fault

ADC0->ACTSS &=~0x0F; // disable all sample sequencesrs (#3 should

be enough-p 821)

while(ADC0->ACTSS &= 0x10000){}; // wait for not busy? -- should fall through right

away

ADC0->EMUX &=(~0xF000);// EM3 = 0000 -> software trigger

ADC0->SSMUX3 = 0x01; // Select AN1 (PE2) as the analog input

51

ADC0->SSCTL3 |= 0x06; // 1st sample is end of sequence (so we're done after

1)

ADC0->PC = 0x03; // 0x03 = 250kS/s

ADC0->SAC |= 0x04; // 16x oversampling and then averaged

ADC0->ACTSS = 0x08; // Configure (re-anable) ADC0

module for sequencer 3

Send_LCD_Command(0x80|Row4);

SendLCDString("ADC Initialized!");

#ifndef INITDELAYS

delayMs(1000);

#endif

}

//TurnOnSIM7000 pulls PWRKEY pin on SIM7000 to GND for >64mS to wake module

void PPS_GPIO_init(void){

SYSCTL->RCGCGPIO |= CLOCK_GPIOA; // set clock for GPIO Port A

delayMs(1);

GPIOA->DIR &= ~pin5; // set PA5 to IN

GPIOA->DEN |= pin5; // digitally enable PA5

GPIOA->PDR |= pin5; // enable pulldown resistor for PA5

GPIOA->IS &= ~pin5; // PA5 is edge-sensitive

GPIOA->IBE&= ~pin5; // PA5 is not both edges

GPIOA->IEV|= pin5; // PA5 falling edge event

GPIOA->ICR = pin5; //Clear flag for pin 5

GPIOA->IM |= pin5; //Unmask interrupt for

PA5

NVIC_EnableIRQ(GPIOA_IRQn); //Enable GPIOA interrupts

NVIC_SetPriority(GPIOA_IRQn,1); //Priority is 2

Send_LCD_Command(0x01);

Send_LCD_Command(0x80|Row1);

SendLCDString("PPS Initialized!");

#ifndef INITDELAYS

delayMs(1000);

#endif

}

void ZC_GPIO_init(void){

SYSCTL->RCGCGPIO |= CLOCK_GPIOC; // set clock for GPIO Port C

delayMs(1);

52

GPIOC->DIR &= ~pin6; //PC6 to input

GPIOC->DEN |= pin6; //Digital enable PC6

GPIOC->AFSEL |= (pin6); //set PC6 to alternate function

GPIOC->PCTL |= 0x07000000; //set PC6 to timer function

}

void ZC_Timer_init(void){

SYSCTL->RCGCWTIMER |=0x2;// Enable clock for timer0;

delayMs(1);

WTIMER1->CTL &=~0x1; // Ensure TimerA1 is disabled

WTIMER1->CFG |= 0x4; // Timer1 on

WTIMER1->TAMR|= 0x17; // TimerA1 to capture, edge-time, and count up

WTIMER1->CTL &= ~0xC; // TimerA1 to rising edge trigger event

//WTIMER1->CTL |= 0x4; // TimerA1 to FALLING EDGE FO TESTING

WTIMER1->TBILR|=0x0000FFFF; //TimerB1 register must be loaded first to avoid interrupt

thrown

WTIMER1->TAILR|=0xFFFFFFFF; //TimerA1 loaded with 0x0;

//WTIMER1->IMR |= 0x4; // Unmask Capture interrupt

WTIMER1->IMR &= ~0x4;

NVIC_EnableIRQ(WTIMER1A_IRQn); //Enable TimerA1 interrupt

NVIC_SetPriority(WTIMER1A_IRQn, 4); //Priority 1

WTIMER1->CTL |= 0x1; // Enable TimerA0;

Send_LCD_Command(0x80|Row2);

SendLCDString("ZC Initialized!");

#ifndef INITDELAYS

delayMs(1000);

#endif

}

void HeartBeatTimerInit(void){

SYSCTL->RCGCWTIMER |= 0x4;

delayMs(1);

WTIMER2->CFG &= 0x0;

WTIMER2->CTL &= ~0x1;

WTIMER2->CFG |= 0x4;

WTIMER2->TAMR|= 0x32;

WTIMER2->TAILR |= 0xFFFFFFFF;

WTIMER2->TAMATCHR = 0x08000000;

WTIMER2->IMR |= 0x10;

NVIC_EnableIRQ(WTIMER2A_IRQn);

53

NVIC_SetPriority(WTIMER2A_IRQn,5);

WTIMER2->CTL |=0x1;

}

void ConfigureGPSMessages(void){

int MSGCheckSumStart = 14;

int DefaultMessageID;

//Populates GPS Send buffer with:

//Header,CFG, and Payload and Length fields for disabling NMEA messages

PopulateHeader();

PopulateClassID(0x06,0x01);

PopulatePayloadLength(0x08);

PopulateDisableUARTPorts(true);

//Disables GGA,GLL,GSA,GSV,RMC, and VTG in that order

for(DefaultMessageID=0;DefaultMessageID<6;DefaultMessageID++){

PopulateTargetMSG(0xF0,DefaultMessageID); //Disables GGA

PopulateChecksum(MSGCheckSumStart);

SendToNEO6GPS(GPSCommand);

}

//Enables ZDA (time NMEA sentence)

PopulateTargetMSG(0xF0,0x8);

PopulateDisableUARTPorts(false);

PopulateChecksum(MSGCheckSumStart);

SendToNEO6GPS(GPSCommand);

/*

//Reenable GGA (Satellite Strenght sentence)

PopulateTargetMSG(0xF0,0x00);

PopulateDisableUARTPorts(false);

PopulateChecksum(MSGCheckSumStart);

SendToNEO6GPS(GPSCommand);

//Reenable GSV (Satellite Strenght sentence)

PopulateTargetMSG(0xF0,0x03);

PopulateDisableUARTPorts(false);

PopulateChecksum(MSGCheckSumStart);

SendToNEO6GPS(GPSCommand);

*/

/*

//Set Messages to once per 5 sec

PopulateClassID(0x06,0x08);

PopulatePayloadLength(0x06);

PopulateRatePayload();

54

PopulateChecksum(MSGCheckSumStart-2);

SendToNEO6GPS(GPSCommand);

*/

Send_LCD_Command(0x80|Row3);

SendLCDString("GPS Messages Set!");

delayMs(400);

}

void HTTP_init(void){

int i;

char SendBuf[40] = "AT";

SendToSIM7000(SendBuf);

#ifdef PCBTESTING

while(1){

SendLCDString("Checking");

delayMs(5000);

}

#endif

for(i=0;i<3;i++){

strcpy(SendBuf,"AT+SAPBR=3,1,\"APN\",\"hologram\"");

SendToSIM7000(SendBuf);

strcpy(SendBuf,"AT+CSTT=\"hologram\"");

SendToSIM7000(SendBuf);

strcpy(SendBuf,"AT+SAPBR=1,1");

SendToSIM7000(SendBuf);

strcpy(SendBuf,"AT+CGNSPWR=0");

SendToSIM7000(SendBuf);

strcpy(SendBuf,"AT+HTTPINIT");

SendToSIM7000(SendBuf);

}

Send_LCD_Command(0x80|Row4);

SendLCDString("HTTP Sequence Sent!");

#ifndef INITDELAYS

delayMs(400);

#endif

}

void DesyncDeviceDWEETing(void){

/*

int NumDeviceInitialized;

55

NumDeviceInitialized = FindNumDevicesInitialized(Device1DWEETname);

if(NumDeviceInitialized == 0 || NumDeviceInitialized == -1){

SendNumDeviceOnDWEET(Device1DWEETname,1);

DeviceIdentifier = 1;

}

else{

SendNumDeviceOnDWEET(Device2DWEETname,2);

DeviceIdentifier = 2;

}

Send_LCD_Command(0x01);

Send_LCD_Command(0x80|Row1);

SendLCDString("Unit Initialized!");

Send_LCD_Command(0x80|Row2);

SendLCDString("Waiting for other");

Send_LCD_Command(0x80|Row3);

SendLCDString("unit...");

while(NumDeviceInitialized!=2){

NumDeviceInitialized = FindNumDevicesInitialized(Device2DWEETname);

delayMs(2000);

Send_LCD_Command(0x80|Row4);

SendLCDString("<3");

delayMs(2000);

Send_LCD_Command(0x80|Row4);

SendLCDString("__");

}

*/

DeviceIdentifier = 1;

if(DeviceIdentifier == 1)

UpdateCloudData(Device1DWEETname);

if(DeviceIdentifier == 2)

UpdateCloudData(Device2DWEETname);

}

int FindNumDevicesInitialized(char DweetThingName[]){

int NumDevicesInitialized;

PullAPIData(DweetThingName);

NumDevicesInitialized = ReturnVariableData(DesyncVariable, sizeof(DesyncVariable));

return NumDevicesInitialized;

}

void SendNumDeviceOnDWEET(char DweetThingName[],int NumOn){

char DWEETDataBuf[5];

char DweetBuf[100] = "AT+HTTPPARA=\"url\",dweet.io/dweet/quietly/for/";

char DweetAction[] = "AT+HTTPACTION=1";

56

strcat(DweetBuf, DweetThingName);

strcat(DweetBuf, "?");

strcat(DweetBuf, "NumDevicesInitialized=");

sprintf(DWEETDataBuf, "%d", NumOn);

strcat(DweetBuf,DWEETDataBuf);

SendToSIM7000(DweetBuf);

SendToSIM7000(DweetAction);

}

void GPIO_PWRKEY_init(void){

SYSCTL->RCGCGPIO |= CLOCK_GPIOF;

delayMs(1);

GPIOF->DIR |= pin1;

GPIOF->DEN |= pin1;

}

void MaskMeasurementInterrupts(void){

GPIOA->IM &= ~0x20;

WTIMER1->IMR &= ~0x4;

UART4->IM &= ~0x10;

WTIMER2->IMR &= 0x10;

}

void UnmaskMeasurementInterrupts(void){

GPIOA->IM |= 0x20;

//WTIMER1->IMR |= 0x4;

UART4->IM |= 0x10;

WTIMER2->IMR |= 0x1;

}

