

Grid-Ready Energy Analytics Training (GREAT) with Data Digital Power Systems Course

This course is provided as an introductory course in digital power systems via The Center for Grid Engineering Education (GridEd) as a part of curriculum development under its U.S. DOE award from the Solar Energy Technology Office known as Grid-Ready Energy Analytics Training (GREAT) with Data as well as conceptualized and funded in part by Utilities comprising participants in an EPRI supplemental project "Educating a Digital Power Workforce to be GREAT with Data." More information about this initiative can be found on our <u>GridEd website</u>.

Instructional Strategy:

There are two instructional pathways:

- A) Free Open-Access Instructional Materials: A sequence of recorded modular lectures, by multiple lecturers, following the syllabus of this course that is outlined below. Lecture videos, power point presentations, will be provided for free via EPRI's Training and Development Learning Management System. The material is intended as a self- taught effort. The materials are created under Creative Commons Copyright and any person or organization may use these materials for their own purposes. Contact Amy Feser, afeser@epri.com if you have trouble accessing.
- B) Fee based Guidance Through Instructional Material: Organizations seeking qualified instructional support to help guide participants through the material may approach Phil Markham, <u>phmarkham@epri.com</u> to schedule appropriate instructional support. (*This does not limit any organization from providing their own instructional support for students working through this material.*)

Meet the Instructors:

The project team consists of experts in power systems, cloud computing, machine learning, stochastic control, analytical modeling, energy-efficient computing, information inference, renewable energy integration, infrastructure resilience & security, statistical inference, game theory, and cyber security. Stony Brook University has experience with the complete lifecycle of technology development demonstrated by the industry's first "Net-zero Energy Data Center," which was a 2013 Computerworld Honors Laureate and includes a recipient of the 2012 IEEE Charles Hirsh Award "for the developing and implementing on Long Island, electric load forecasting methods and smart grid technologies". **Contact:** Zhenhua Liu, Zhenhua.liu@stonybrook.edu

Professor Yu serves as the funding co-chair for IEEE Power and Energy Society Big Data Applications in Power Distribution Network task force which will serve as a great venue for tech transfer. UC Riverside has a strategic Academic Partnership Program with Cloudera and is equipped with an Oracle Big Data Appliance, which provides hands-on data science training. UC Riverside serves east of Los Angeles known as the Inland Empire, which is more populous (4.5 million) than half of the U.S. More than 45 percent of UC Riverside undergraduates are underrepresented minority groups, and more than half are from disadvantaged backgrounds placing UC Riverside in a unique position to impact these groups. **Contact:** Nanpeng (Eric) Yu, <u>nyu@ece.ucr.edu</u>

TEXAS

The project team consists of experts in power systems, renewable energy integration, data science, deep learning, and robust optimization. UT's energy systems program is well known for its research and education efforts centered around the production, distribution, and use of electric energy. It also has a strong collaboration tradition with the electric power industry in emerging technology development and workforce training. UT's data science program has pioneered in establishing a comprehensive curriculum consisting of cutting-edge machine learning algorithms and their applications to various fields. The UT team brings valuable experience and innovative approaches to the design of new courses on data science and digital technologies for training the workforce on next-generation power systems. **Contact:** Hao Zhu, haozhu@utexas.edu

The institution, and PI Professor Liu, is a leader in cyber-physical system security of the power grid. Virginia Tech's research has collaborated with the industry to develop computational methods for vulnerability analysis and anomaly detection in the Supervisory Control and Data Acquisition (SCADA) system and substation automation environment. In addition to the many publications, Virginia Tech has accumulated extensive experience in developing and using testbeds for evaluation of cyber-physical system security. **Contact:** Chen-Ching Liu, ccliu@vt.edu

WASHINGTON STATE

The project team consists of experts in power systems, renewable energy integration, data sciences, optimization and control, and cyber-physical systems. WSU's coveted power program offers a diverse curriculum that closely aligns with the need of the emerging power industry. At WSU, a rich collaboration between faculty members in power systems and computer science addresses emerging challenges for cybersecurity, big data, and information and communication technologies. WSU team has extensively contributed to educational material for training workforce on modern, and renewables-rich power systems operations. **Contact:** Anamika Dubey, <u>anamika.dubey@wsu.edu</u>

Digital Power Course Syllabus

Section 1	Electric Power Network
1.1	Overview
	 Overview of the power grid
	 Generation, transmission, distribution
	 Transmission network configuration
	 Distribution network configuration
	 Distributed energy resources – wind energy, solar PV and energy storage
	 Microgrids
	Power System Operation and Communications
1.2	 Supervisory control and Data Acquisition (SCADA) System
	 Power system communications
	 Energy control centers - centralized transmission operation
	 Distribution operating centers – centralized distribution operation
	 Energy Management System (EMS)
	 Distribution Management System (DMS)
	 Distributed Energy Resources Management System (DERMS)
	 Microgrid control
	o Smart grid
1.3	Power Grid as an Electrical Network
	 Laws of physics for electrical networks
	 Power flow in a steady state
	 Economic operation and dispatch
	 Control of frequency
	 Control of voltages
1.4	Power System Dynamics
	 Small disturbance stability
	o Transient stability
	 Voltage stability
	 Power system faults and protection
	 Reliability, resilience, and security
	o Outages
	• N-k security
	• Reliability indices
	 Resilience under extreme events
4 5	• Cyber-power system security
1.5	Reliability, Resilience and Security
	• Outages
	• N-k security
	Reliability indices
	Resilience under extreme events
	 Cyber-power system security

R The Center for Grid Engineering Education

Section 2	Electric Power Distribution System with Distributed Assets
2.1	Introduction to Electric Power Distribution Systems
	 Introduction to distribution systems
	 Distribution systems components
	 Distribution management system
	 Feeder Voltage regulation
	 Outage management system, FLISR, Resilience
2.2	Load Characteristics
	 Nature of load, and definitions
	 Load allocation
	 Voltage drop calculation
2.3	Distribution Transformers
	o Transformer recap
	 Introduction to distribution transformers
	 Three-phase transformer connections
	 Other transformer connections
2.4	Line and Load Models
	 ABCD parameter model for three-phase representation
	o ZIP load models
	 Voltage drop calculation
2.5	Distribution Power Flow
	 Forward-backward sweep
	 Current injection power flow
2.6.1	Voltage Control Devices
	 Step voltage regulators
	 Line drop compensation
2.6.2	Capacitor Bank Models and Voltage Control
2.7	• Voltage rise calculations
2.7	Distributed Energy Recourses
	• Power distribution systems
	• Solar in world
	 Impacts of PV integration
2.0	 Load conditions
2.8	Fault Analysis and Systems Protection
	 Overcurrent protection basic principles Overcurrent protection devices
	 Overcurrent protection devices Protection coordination
	• Protection coordination
Section 3	Digital Solution Techniques for Solving Network Equations
3.1	Power Systems Representation
3.2	Power Flow Analysis
3.3	Power World Example Running
3.4	Transient network analyzers
3.5	• <u>PSCAD</u>

The Center for Grid Engineering Education

Section 4	Principles and Features of a Smart Grid Technology & Systems
4.1	What is a Smart Grid
	Part I
	Part II
4.2	Renewable Generation
4.3	Real Time Data Collection
4.4	Integrated Data Communication
4.5	Intelligent Decision Making
4.6	Demand Response
4.7	Economics and Market Operation
4.8	Assignment
	 Assignment Tutorial Part I Assignment Tutorial Part II
Section 5	Assignment Tutorial Part II Data Science
Section 5	
5.1	Linear Regression and Robust Regression, Regularization
	• Theory and application
5.2 - 5.3	Decision Trees, Random Forest and Boosting Trees (3 lectures) Hao and Yu
	 Theory Application
5.4	 Application Support Vector Machines
5.4	• Theory and application
5.5	Deep Neural Network
5.5	 Feed-forward neural network
	 Theory and application
	 Highlight and list of full applications
5.6	Convolutional Neural Network
	 Theory and application
5.7	Recurrent Neural Network
	 Theory and application
5.8	Generative Model
5.9	Cluster Analysis
5.10	Dimensionality Reduction
5.11	Introduction to Reinforcement Learning
5.12	Markov Decision Process
5.13	Dynamic Programming
5.14	Monte Carlo Methods
5.15	Temporal Difference
5.16	Deep Q Learning
5.17	Applications of Deep Reinforcement Learning

The Center for Grid Engineering Education

Section 6	Cyber Security of the Power Grid
6.1	Impact of Cyberattacks and Vulnerabilities
	 Cyber-power system concept
	o Cyber vulnerabilities
	o Cyberattack modes
	 Cyber security concepts
	 Cyber security technologies
	 NERC CIP and compliance
6.2	Cyber-Power System Security
6.2	o Cyber system model
	 Power system model
	 Interactions between cyber and power systems
	 Abnormal steady state and dynamic behaviors caused by cyber attacks
	 Cyber-power system simulation environment
	o Intrusion scenarios
	 Quantifying the impact on the physical system
	 Vulnerability metrics
	 Reducing vulnerability
6.3	Cyber-Security of Transmission Systems
0.0	o SCADA security
	o Substations
	 Substation automation
	 Cyber security of substations
	 Anomaly detection
	 Mitigation and recovery
	 Computer demos of substation intrusion and mitigation scenarios
6.4	Cyber-Security of Distribution Systems
	 Outage management and service restoration
	 Distributed energy resources
	o Smart meters
	o Remote-controlled devices
	 Computer demos of cyber-distribution system security intrusion scenarios

- Acknowledgment. "This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technology Office Award Number DE-0008574."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."