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Abstract

The research introduces an alternative mobile application, ChargeBnB, employing an escort evolutionary
game dynamic pricing algorithm and a Markov chain-based stochastic model for location determination.
The pricing algorithm optimizes charging prices for EV and EVSE owners based on profit motives and
externalities. Data gathered from surveys of 25 Households and drivers, including behavior and
appliance usage, refines the algorithms. A case study demonstrates user experience, and the paper
outlines the application's future overview. The proposed solution, combining dynamic pricing and
strategic location determination, contributes to efficient EV charging resource allocation, increased
revenue for EVSE owners

1 Introduction

In response to the growing environmental concerns associated with fossil fuels, various companies have
increasingly introduced electric vehicles (EVs) to the market. EVs have emerged as a sustainable alternative
to traditional fossil fuel cars, primarily due to their potential to reduce greenhouse gas emissions. EVs
charging stations (CS) are increasing fast, however, in metropolitan cities such as New York City, there are
limitations for CS due its infrastructure, however, in this paper we are aiming to offer a possible solution
to this problem.

This project intends to develop the idea of shared home charging, specifically on enabling electric vehicle
owners to find and use CS offered by homeowners, who open their home chargers for EVs that need a CS
and explore the challenges and feasibility of implementing a home charging system for EV users. Our study
presents a case study that showcases how our idea is implemented in a mobile application design on
Figma. We gather user’s information through a brief survey on the app and implement two algorithms
from their answers: pricing and location. The pricing algorithm will let the EV owner see locations in the
mobile application where home chargers are available alongside their costs and reviews. In the other hand,
the location algorithm will let users register as a home charger facility and allow them to make profit out
of their charger by letting other EV users utilize the charger in the times the homeowner sets.

2 Literature Review

Incentivizing EV owners to charge at specific locations and times presents a significant challenge that
numerous entities, ranging from researchers [1][2] to governmental organizations, have sought to
address. This includes initiatives such as the Biden-Harris EV Charging Action Plan [3] and Governor
Hochul’s charging discount program [4].

Our mobile application provides a platform for electric vehicle (EV) owners to find and use residential
charging stations. Thus, the various methods of encouraging charging has been investigated. One such
method, pricing, is analyzed in the next section.

Through our literature review, it has been determined that price-based incentives, which encompass
various models can be categorized into two main groups: 1) types of pricing incentives, and 2) price
determination. Our objective was to determine the best incentive structure, and price determination
methodology for our application.



Pricing Incentive Structure:

The time of use (TOU) model is one approach where [5] explores the development of a dynamic TOU
pricing strategy, focusing on user satisfaction. This strategy considers user travel and charging patterns to
devise a TOU strategy tailored to a specific location. However, the analysis incorporates EV owner needs
on an aggregate level, without providing any individual user specificity. In addition, demand response
programs, as discussed in [6], propose the use of EV battery switching to further reduce the overall
community load. Additionally, subscription models, offered by companies like EVCS, are another option,
but is most beneficial for large scale EVSE owners. Finally, dynamic pricing models that account for
variables such as grid supply and demand constraints are examined in [7][8].

Upon review of the current state of technology discussed above, we chose to use dynamic pricing for the
ChargeBnB pricing structure. This structure mirrors models seen in public applications like Airbnb and
Uber. Once the structure was decided, a price determination methodology based on the selected
incentive structure was selected based on the discussion below.

Price Determination:

Dynamic pricing models can vary widely and include formulating the pricing challenge as a Markov
Decision Problem and presenting several solutions such as Q-learning and actor-critic as proposed in [9].
However, this model requires there to be a known state transition probability, an externality such as
competitor pricing was not considered. The authors of [10] propose an approach that optimizes the EVSE
owners profit based on the reduction of the owner’s peak load. This benefits the EVSE owner but does not
incentivize EV owners to charge. Escort evolutionary game theory is proposed in [11] using the algorithm
to adjust prices based on the needs of EV owners and the system owner through an aggregator. While this
model does not specifically use charging price to incentivize charging, the dynamic and customizability
provide the best option for the ChargeBnB platform.

After evaluating the current state of technology as outlined above, we have chosen to implement the
dynamic pricing model based on the escort evolutionary game dynamics detailed in [11]. This model
provides a flexible method to establish the optimal price for EV and EVSE owners based on their profit
and savings motives as well as individual externalities. Additionally, this model excels when empirical
data can be used to augment the escort functions. Thus adjusting strategy performance to allow for
tailored pricing, which improves in accuracy as it incorporates increasing amounts of usage data over
time.

Data Acquisition:

To be able to effectively schedule the charging of vehicles, it is important to understand the energy
consumption of the homeowner. [14] developed a representative schedule only for HVAC appliances for
future diagnostics. [18] as well, only considered HVAC systems and assumed that an aggregator collects
the required information on energy consumption and these systems were the main factors in
understanding overall energy demand for planning EV infrastructure.

It is important to consider different factors when scheduling EVs to a charging station, in our case, to a
home charger. Reference [15] highlights the necessity of situating charging stations in areas with ample
parking by analyzing houses and EVs dimensions. According to [16], installing Level 2 chargers in private
and residential spaces is advised to reduce the complexity and need for utility company approval for fast
charging stations, which could deter homeowners. The "EV Project," a study cited in [13], investigated the
driving and charging habits of Nissan LEAF drivers in 2012, revealing that most charging typically occurs
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when the EV's State of Charge (SoC) is between 50% to 60%. However, this data was collected with a public
database. Conversely, [12] analyzed EV charging patterns using the 2017 National Household Travel Survey
(NHTS) data, finding that charging usually starts at 41%, primarily when the SoC is between 40% to 50%.
This study also noted that the average SoC at workplace and public charging stations is 47.8% and 39.1%,
respectively. [17] observed a preference among drivers for charging stations on local streets rather than
highways when SoC is low, emphasizing the importance of strategically placing stations in suburban areas.

The above-mentioned literature reveals that there are not enough factors taking place in the scheduling
system of EVs to a charging station. It is important to increase the number of appliances for host homes
when opening their chargers. None of the works mentioned in this literature review consider a vast
number of appliances, nor gathered exact home energy consumption data, nor gathered personalized data
to accommodate users. In the other hand some of the works mentioned helped us to concretely gathered
the necessary data for the algorithms presented in this paper such as, [15] that emphasized the
significance of focusing on suburban regions for developing residential charging models, particularly in
areas with higher income levels. Specifically, the study highlighted the need to target homes that have
both parking spaces and charging facilities.

Based on these discoveries, for our acquired data we decided to:

1. Survey several participants to accommodate based on homeowner preferences.

2. Consider a vast number of appliances based on participants answers.

3. ltis necessary to consider electricity rates into our scheduling systems according to homeowners’
electricity bill.

4. Study areas with a higher income. In our analysis, areas like Riverdale in The Bronx, characterized
by an average household income of approximately $126,300 and a median income of $79,708,
were particularly relevant for our research [19].

5. Consider market prices of charging stations in selected areas to base homeowner’s charger rates
on this.

Location Determination:

For a homeowner to utilize the ChargeBNB service as a source of income, they must consider their
home’s availability for charging. Two important factors to be examined in this decision include their
lifestyle/personal schedule and their home energy consumption patterns to avoid problems such as
obstructing their personal routine, as well as causing stress to their electrical system. Many approaches
have been studied when it comes to the scheduling problem of household appliances with the ultimate
goal of reducing energy consumption at peak grid times for users. Fuzzy Logic Controller methods for
home energy management continue to grow in popularity as they facilitate the consideration of user
comfort and the EV’s SoC for future needs [25]. For systems with already implemented variable
renewable energy, other ideas for the future suggest Utility Controlled Charging (UCC), where charging
of EV’s only occurs during times of excess renewable energy [23]. These proposals, however, exclude the
possibility of user participation without the incorporation of smart devices in their home.

Less intrusive methods, like recommendation algorithms that suggest when and where to charge EVs are
now in the conversation for the use of energy in a more efficient manner. Chained recommendations
based on classification levels combat the frequency of congestion when arriving at charging stations for
EV drivers and help the distribution of EVs amongst stations during such events [24]. Taking the grid into
consideration, with the rise of EV usage, optimization problems for EV charging stations to shave peak



loads are also explored [21]. These methods address energy efficiency from the perspective of charging
stations that work on different schedules than a homeowner might. For that reason, recommendations
that are more geared towards home charging applications are in the best interest of ChargeBNB, since
users that are more informed about their energy consumption, as well as off-peak and on-peak hours,
tend to make better decisions about their time of charging [26].

Markov’s Chain-based stochastic model approach proposed in [27] resolves some of the concerns
expressed above. Using only user’s activity pattern, this algorithm predicts the likelihood of a household
being in a specific ‘energy state’ (ranked from least active to most active), based on their previous state.
These Markov methodologies can be used in conjunction with publicly available data and weather-
related factors to predict household consumption [22]. This is not the only way, however, to obtain the
inputs needed for this algorithm. Allowing users to be surveyed reduces the need for every participant of
ChargeBNB to own a smart meter to understand their energy behavior. While [27] goes as far as
calculating and predicting the energy consumption in kWh of the household, the probability of being in
an energy state is sufficient for the purposes of this application. For this reason, this paper explores the
implementation of a Markov chain-based stochastic model for the suggestion of a ‘best-time’ for a home
to be available for charging, based on empirical data collected from user describing their energy usage
and allowing them to input their available times to address user comfort.

3 Methodology

3.1 Overview

ChargeBnB introduces an innovative approach aimed at enhancing the accessibility of charging stations
for electric vehicle (EV) drivers, augmenting revenue opportunities for homeowners who invest in
Electric Vehicle Supply Equipment (EVSE), and enabling more effective distribution of electrical loads
from EV charging across the grid. This is achieved by developing a mobile application, to meet the needs
of both EV and EVSE owners, enabling them to efficiently negotiate charging arrangements.

The research paper details the essential features of the mobile application, underscoring its role in
validating the viability and effectiveness of our novel approach to allocating EV charging resources. Key
functionalities of the application include:

1. The application of an escort evolutionary game dynamic pricing algorithm, which plays a pivotal
role in determining a mutually acceptable charging price for both parties involved.

2. A Markov chain-based stochastic model is used to determine the location, ensuring that EV
owners are presented with privately-owned charging stations in proximity to them, in line with
the availability and scheduling preferences of the EVSE owners.

3. To refine the parameters of these algorithms, the study leverages empirical data collected from
surveys. Additionally appliance information and EV SoC data was collected.

After a description of the methods and data we present a case study demonstrating the user experience
(UX) and flow of application for both the EV owner and the EVSE owner. Finally, the location, pricing, and
data analysis from the case study are discussed.



3.2 Price Determination

Escort Evolutionary Game Dynamics

Escort evolutionary game dynamics (EEGD) is a modified approach to the standard evolutionary game
dynamic algorithm. EEGD models the evolution of strategies within populations. Interactions within
populations using each strategy causes evolutions as the proportion of the population using a strategy
shift with each interaction. EEGD extends this process by using escort functions to adjust the influence
of different strategies based on external factors or conditions. This enables more real-world modeling
based on available data. The standard EEDG function, which demonstrates the rate of change of the
population proportion using strategy k can be seen below in equation 1.

X = @) (i) = fo(x) eq.1

Where:

e x; is element k of the state vector of portions of the population following pure strategy, k.

o @i (xy) is the escort function associated with strategy k, which modulates the growth rate based
on the strategy’s performance.

o  fi(xy) is the payoff function for strategy k, which determines the benefit of playing strategy k
given the current state x.

. fgo(xk) is the weighted average payoff across all strategies, weighted by the escort function.

Using EEGD our methodology includes novel algorithms for determining the EV charging price. This is the
contractual price agreed upon by both the EVSE owner and the EV owner with which to charge the
vehicle where the payoff for each population group does not go below zero. In addition, external factors
such as local market prices, ratings, and distance to the charging station are used to augment the payoff
to determine a more accurate price.

The escort evolutionary game dynamic (EEGD) is designed using the methodologies described in [1]. The
algorithm is modified so that the payoff function is instead the charge price from the perspective of the
buyer and seller. Equilibrium is reached when the rate of change of the population proportions is less
than 1%. The escort functions were determined using a trendline based on the empirical data. The data
used was gathered from our surveys which are discussed in Section 3.4.

State Vector

The state vector (eq, 2) for EV owners is a vector indicating the proportion of the population following
strategy k. Therefore, there are k elements in the vector, and the sum of the elements must equal to 1. A
similar vector, vy, is used for EVSE owners. In our model, there are 2 population groups which must have
their strategies converge in the EEGD: 1. The EV owners who want to charge at lowest possible price, and
2. The EVSE owners, who want to sell at the highest possible price. Each strategy in the algorithm is a
distinct price at which charging will occur. Each element in the state vector, x, represents the portion of
the population using strategy (price) k. The initial state vector is set manually to start the evolutions.
Each evolution changes the proportion of the population, x;, using each strategy by x; +

At,where At = 1.

The number of strategies is determined by the range of prices being considered for EV charging. These
prices are constrained within the bounds of pmax and pmin described in below in equations 3 and 4.



x = [x1, %2, o, xg |7 eq.2

p_min = max{p, = C, D *.7} eq.3
/4
p_max = min {p * 1.3,E) eq.4

Where:

e D is the average market price of charging at public charging stations in the surrounding area
(S/kWh). The adjustments applied (.7, and 1.3) are to encompass the range of charging station
prices.

e Visthe maximum value the EV owner assigns to a fully charged vehicle (S)

e Eisthe energy required to fully charge the vehicle (kWh)

Payoff Function

The payoff functions (eq. 4-5) are used to determine the fit of each strategy. The payoff for the EV owner
(fr) demonstrates that their price maximum is based on the total utility that they gain from having a fully
charged vehicle. This utility decreases as the price they must pay increases.

For EVSE owners the payoff function (g, ) represents the profit they make. Profit increase with the price,
but this is not infinite. When the price is above what EV owners are willing to accept, no profit is made.

fr@) =V —p,-E eq.5
9k) =@ —C)-E eq.6
Where:

e p.=the price EV charger owners want to charge ($/kWh)

e pp = the price at which EV owners will buy (S/kWh)

e k =the strategy used (each discrete price, p. and ps)

eV =maximum value the EV owner assigns to a fully charged vehicle (S)
e E =the energy required to fully charge the vehicle (kWh)

e C =the cost of providing the charging service ($/kWh)

Escort Function
The escort function used to adjust the payoff growth rate of the EV owner’s strategies was created by
curve fitting the empirical data gathered in the surveys.

The distance that the EV owner must travel to the EVSE requires a specific escort adjustment (TABLE 1)
as users adjust their utility for charging based on the inconvenience.

The escort function used to adjust the payoff growth rate of the EVSE owner’s strategies was created by
using the rating of the EVSE owner versus the average rating of the surrounding chargers. The empirical
data indicated that the charging station rating mattered to users. However, no equation could be curve
fit. Therefore, the simplified equation (eq. 8) seen below was used for all strategies greater than p.

TABLE 1: ESCORT FUNCTIONS PER TIME TO CHARGER



Time Discounts (%) ]
. Escort Functions y = ¢,
(min) 5% 10% 15% 20%
0 0.462 0.308 0.154 0.038 | y=1.3054e”(-16.3x)
1 0.577 0.308 0.154 0.038 | y =-0.085In(x)-0.1573
2 0.077 0.077 0.077 0.038 | y=-0.021In(x)+0.0211
3 0.038 0.077 0.038 0.000 | y=-0.025In(x) - 0.0157
5 0.154 0.231 0.154 0.192 | y=0.0769x +.1731
6 0.038 0.038 0.000 0.000 | y=-0.032In(x) - 0.0507
7 0.000 0.000 0.000 0.038 | y=0.021In(x) + 0.0558
7.5 0.000 0.000 0.038 0.038 | y=0.0318In(x) + 0.0892
8 0.000 0.038 0.000 0.000 | y=-0.004In(x)+0.0017
10 0.077 0.192 0.308 0.308 | y=0.1799In(x) + 0.6171
15 0.038 0.000 0.231 0.192 | y=0.1415In(x) + 0.4269
20 0.000 0.000 0.000 0.115 | y=0.063In(x) + 0.1675
30 0.000 0.038 0.000 0.038 | y=0.0174In(x) + 0.0575

Where:

e yisthe population adjustment based on the time and discounts.
e Time is the time it takes the EV driver to reach the EV charging location based on the mobile

application’s GPS data.

e x(eq. 7)is the discount needed for the time inconvenience. This discount is based on the current
strategy being adjusted and the maximum strategy price, p_max.

Where:

X = Pmax — Db
[M]
2
rating
lpk (pc) = R
avg

e rating is the star rating of the EVSE location assessed.
® Rgyg is the average star rating of the surrounding EV charging locations.

Weighted Average Payoff Function

eq.7

The average of the payoffs across all strategies weighted by associated escort functions (f(p(pb) and
g ¥(p.) ) was calculated using equation 9 and 10 below.

= _ k=1 Wk
fo(p) =S e
_ _ Xk=1k
gy (o) =S e

Wi = X X P X fie

Vi = Yie XY X fi

eq.9

eq.10

eq.11
eq.12



Dynamics
The initial proportions are set for state vectors x and y for the first iteration. The payoff function, escort

function, and weighted average escort function are calculated for each strategy. Afterwards, the rate of
change of the population for each strategy is calculated. The new state vectors are created by adding the
rate of change to the corresponding strategy proportion (eqg. 13 and eq. 14).

X1 =x9+At X x eq.13
y1=y0+At><j/ €q14
3.3 Location Determination

Location Determination

We have chosen a Markov chain-based model in order to predict a user’s home energy consumption in
the future. In order to do this, we gathered data that described the user’s energy activity during specific
times of the day. This energy (in kWh) is then converted into states, where the definition of each state
can be found in Table 2.

TABLE 2: STATE DEFINITIONS

State | Description
0 Absent

1 Inactive

2 Active

3 Hyperactive

This information is used to construct a transition matrix for this user, which is the tool utilized to predict
their future activity (next state) based on only their current activity (current state). These probabilities
are used to create an educated suggestion to a homeowner of when they should make their home
available to others for charging EVs. The mathematical process and definitions for each step of this
algorithm is carried out below:

Transition Matrix

P;; = Nij eq.15
=53 N :
Zk=o Ni,k
P; j is the probability of transitioning from state i to j. Where, 0 < P; ; < 1.
N; ; is the number of transitions from state i to state j

N; i is the number of transitions from state i to state k, where k iterates from 0 to 3 (actual states).
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We use eq. 15 to populate our transition matrix shown below which represents all the probabilities of a
user changing from a certain state directly into a different state independently. For instance, the
probability of a user in state 0 transitioning directly into a state 3 is represented by P 3

PO,O PO,l PO,Z P0,3
P1,O Pl,l P1,2 P1,3
PZ,O P2,1 P2,2 P2,3
P3,O P3,1 P3,2 P3,3

Ty = eq.16

Probability Matrix
The probability matrix is composed of

st (t) = [Po(t) Pi(6) P(t) P3(t)] eq.17

Where, u represents a specific user and t is a certain time during the day. We obtained this from the
survey. For instance, at time 0 it will look like the equation below,

s*(0) = [Po(0) Pi(0) P,(0) P3(0)] eq.18
If for example, a user has an initial state,
s“(0)=[0 0 1 0] eq.19

this user has 100% probability of being in state 2 (active). Moreover, any other subsequent s*(t) is
calculated using the formula below,

sU(t) = s¥(t—1) X Ty eq.20

By utilizing the above formula, we populate a 24 by 4 probability matrix that represents a whole day. The
user will be required to enter a time range in which they want to serve as a charging point. Thus,
decreasing the iterations of our algorithm and serving them a customized result. Per say, a user wants to
participate from 9 am to 6 pm, then the 24 by 4 probability matrix will be reduce as shown below.

PO o PO [P(®) o Ps(O)

-

eq.21

PO(:23) P3(:23) PO(:17) P3(:17)

Once we find a matrix within our time constraints, we calculate the probability of all users within the
same household being all-absent, all-inactive, at least one user being active and one user being hyper-
active.

Pall—absent = | | Upg(t) eq. 22
ue

P ali—inactive = | | ” lf(t) €q23
ue

P1+active =1- | | U1 - Pg(t) eq. 24
ue

11



P1+hyperactive =1- 1_[ 1- P%(t) eq. 25
ueu

Where, U is the set of all users within a household and u is a certain user within that set.

The joint probabilities described above can be expanded in the following manner:

Paii—absent = P(}(t) X P(? (t) e X P(;l(t) eq.26
Pall—inactive = Pll(t) X Pzz(t) e X P’?(t) eq. 27
P1+active =1- [(1 - le(t)) X (1 - Pzz(t)> v X (1 - Pzn(t))] eq. 28
P1+active =1- [(1 - P?,l(t)) X (1 - P:%z(t)> e X (1 - P?tl(t))] eq. 29

Where n represents the total number of users in the household.

At the end of this process, the resulting matrix will contain:

Pall—absent(timesmrt) Pall—inactive(timesmrt) P1+active(timesmrt) P1+hyperactive(timestart)
: : : : eq.30
Pall—absent(timeend) Pall—inactive(timeend) P1+active(timeend) P1+hyperactive(timeend)
This consumption probability matrix represents the whole household. For every time period in this
matrix the sum of the first two columns is calculated,
Pall—absent + Pall—inactive eq. 31

This is the value used to determine which time is best suited for charging, given the selected time period
by the user. The best time to charge is represented by the maximum value provided by the equation
described above.

Algorithm Implementation

In Appendix B we provide the flow chart for the Markov chain-based model that was described above.
The algorithm was written in C++ but can be implemented in any language of choice. Additionally, we
have included two options for the homeowner; a less personalized approach defined as ‘default’ and a
more customized approach by making use of their smart meter to gather live data. Furthermore, the
homeowner is asked to select the day that represents their typical consumption activity if they select the
smart meter option. The ‘default’ route branches off into the calculation of cut-off values for states
based on the empirical data obtained in our surveys.

3.4 Data Set Determination

Our study presents an analysis of data from a survey meant to analyze user behavior to construct two
distinct algorithms, from which 26 people participated that own a fossil fuel or hybrid vehicles or electric
vehicles. Participants were residents of New York City and the Westchester area, as well as Con Edison Inc.
customers. The survey was intended to learn how people make decisions based on ratings and how they
use their appliances at home. In addition to this, we gathered market prices for different charging stations,
EVs state of charge information, and electricity rate from Con Edison customers.

12



Survey Data

Our survey included 26 participants, 22 of whom drove fossil fuel or hybrid vehicles and 4 of whom drove
electric vehicles. The survey was done in two different sections, and each of them had distinct questions
for our algorithms.

Pricing algorithm

For our pricing algorithm, variable V questions in survey included: what their vehicle’s battery capacity or
fuel tank size is, the cost of charging or refueling, and the locations where they charge the EVs or the type
of gasoline they use. For the distance and ratings needed into the algorithm, participants were questioned
on how far they would go for different discounts, and how much would they pay for different average stars
ratings in gas/charging stations.

The pricing algorithm required additional data, such as at what SoC EVs are at when they approach a
charging station, market price of charging stations, and Con Edison electricity rates. For our Con Edison
data, we gathered electricity bills from 14 different people in districts zip codes and averaged them out for
our algorithm. We focused on zip codes that were geographically close to each other to concentrate our
study within a more compact area. We specifically chose zip codes 10463, 10461, 10471, 10468, 10467,
10470, 10469, and 10470 as our primary targets to gather data on the market prices of different charging
stations. Additionally, zip code 10701 in Yonkers was also included because of its proximity to 10471 and
10463. Two EV charging apps were utilized to gather the market prices: PlugShare and ChargePoint.

Location algorithm

For our location algorithm, the survey delved into participants usage patterns of home appliances and
categorized their activities into four distinct scenarios: absent (state 0), inactive (state 1), active (state 2),
and hyperactive (state 3). Participants were required to indicate the time periods they associated with
each scenario over a 24-hour period to reflect their typical daily consumption. The questions asked
participants included: what appliances they own, at what times they feel they are the most absent,
inactive, active, or hyperactive, and at what time they are willing to open their home charger to other EV
users. This last question being a more scenario question due to our limitation of actual EVs users in our
survey.

Furthermore, we then collected data on when participants transitioned between these states and
calculated their energy consumption in kilowatt-hours (kWh) for each state. They were also asked to
specify the appliances they used in each state. We averaged the kWh usage for three different commercial
brands for these appliances to establish default settings for our app, allowing users to opt for these instead
of personalized settings. Moreover, we averaged out the state data from each participant to determine
our app's default settings for each state.

In addition, a smart meter was installed in a participant's home to monitor their energy consumption over
a week. This data was organized from lowest to highest consumption and then divided into quartiles, with
state O representing 0% to 25%, state 1 from 25% to 75%, state 2 from 75% to 90%, and state 3 from 90%
to 100%. Utilizing a smart meter connection provides a more personalized and accurate definition of states
for the user. The survey also inquired about participants' willingness to allow other EV users to access their
home chargers, a hypothetical scenario for most respondents.
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Fig. 1. Map of zip codes in The Bronx

4 Case Study

4.1 Overview

The following section contains a case study along with a walkthrough of the application from an EV owner’s
perspective and a homeowner’s perspective. If the user’s intent is to allow their charger to be used by
others, the set-up of the application will be different than for a driver looking for a charger. It is important
to emphasize that the account types are not mutually exclusive, as a home charger owner could also utilize
the app to find a charger for their EV, and vice versa.

Case Study
In this case study, we examine the case of Leslie Perez who is looking for a home charger while driving

around the vicinity of29 Bayley Ave, Yonkers, NY. Leslie drives a Tesla Model Y vehicle. She is looking to
charge for 1 hour while she finishes her run at Van Cortland Park. When she opens the ChargeBNB app,
she sees multiple options available for charging. On the app she sees a map with an average rating of 4.70-
stars for the nearby chargers. The time is 7 AM. She makes her selection based on a $1.36 price found for
a charger on 4505 Delafield Ave, The Bronx, NY.

On the other hand, James Winston has listed his charger at 4505 Delafield Ave, The Bronx, NY on
ChargeBNB, a 10-minute drive from the EV owner. James has selected a personalized default set up in the
app, and entered the appliances which he uses with the corresponding times. James has also entered the
times at which his charger is available, 7AM-3PM. He currently has a rating of 4.82 stars.

The rest of section 4 contains a walkthrough depiction and description of the ChargeBNB features and
interface for the homeowner and for the EV owner when they open it up for the first time, and in the case
of this event.
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4.2 Profile Creation

9:41 all T - 9:41 all T -
Join ChargeBnB Join ChargeBnB

Create Account Create Account

Fig. 2. EV owner Initial profile creation Fig. 3. EVSE owner Initial profile creation
Users deciding to use our mobile application are EV and/ or EVSE owners. When first creating their
profile, they will not need to make a distinction regarding how they will use the application. This is to
allow quick and easy account creation without losing customers due to inconvenience. In Figures 2 and
3, both the EV owner (Leslie Perez) and the EVSE owner (James Winston) both complete their profile
with the same user demographic information.

Once a user decides to list their EVSE on the application, the profile setup deviates. The EVSE owner
walkthrough is discussed next.

EVSE Owner Walkthrough
A user who decides to list their EVSE on the application will click on the button as indicated in Figure 4,
and proceede to the EVSE owner setup by selecting their location on the map in Figure 5.
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9:41 wll T -

€ Login Profile

James Winston = Q. 4505 Delafield Ave, Bronx, NY 10471

- james_wins_92@gmai.com

ChargeBnB your charger ﬂ
‘- ; ‘ .

Settings

9:41 all T -

Cancel Charger Location Next

My Vehicle

4505 Delafield Ave
Press and hold pin to move

Payment Method

Charge History

Monthly Statement

v vV VvV Vv v

Survey
Hosting
Update Listing

Availability

v VvV v

Hosting History

Sucvey >

-

Fig. 4. James decides to list his EVSE Fig. 5. Address selection on the map

Once the address is selected on the map, the EVSE owner can proceed to setting up the details for their
EVSE location. The setup menu can be seen in Figure 6.

The EVSE plug and network type are setup by clicking Charger on the EVSE setup menu. The values for
each can be selected and updated as needed. This step can be seen in Figure 7.

The EVSE location description is input by selecting Description on the EVSE setup menu. The description
of the EVSE lets potienl EV owners coming to charge know how to access the EVSE, and if there are any
additional information regarding usage. This step can be seen in Figure 8.

Finally the amenities available at and near the EVSE location can be selected on by click on Amenities on
the EVSE setup menu. Additional escort functions can be created to better adjust pricing based on EV
owners’ preference for various amenities. This step can be seen in Figure 9.

The Survey and Availability setup are described in the Survey Walkthrough in Section 4.3.
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9:41 all T =-

9:41 ull T -

cancel Charger Location  save

Cancel Edit Description Save

Update charger access description

Let EV owners know how to access your charger

Charger >
Description >
Survey >
Availability >
Amenities >
Add photos of your location
Pricing > You will need 3 photos to get started
Fig. 6. EVSE Setup Menu [-|- Add photos ]
9:41 il = - [Q Take new photos j
Cancel Edit Charger Seve Fig. 8. EVSE Description setup screen
Plugs: p to edit
Quick Charge (CCS/ SAE Combo) 9:41 il = -
Network:

Cancel Edit Amenities Save
CarCharging

Select available amenities at location

Let EV owners know what amenitie

~—
& ™
O )
. J
Handicap Free Wifi Shopping
Accessible Nearby
N
il R A
Select Network: ' ' ﬁ
Restroom Public House
Available Transportation Access
a— ' .
CarCharging -— SI
Park Restaurants Recreation
Nearby Nearby
Fig. 7. EVSE Charger setup screen Fig. 9. EVSE Amenities setup screen

EV Owner Walkthrough

A user who decides to use ChargeBnB for EV charging needs to set up their EV on their profile. They can
do this by clicking ‘Chose your EV’ as seen in Figure 10.
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This takes the user to Add Vehicle screen where they can click ‘Add Vehicle’ to begin selecting the make

and model of their EV. This is seen in Figure 11.

The EV manufacturer is first selected as seen in Figure 12. This then takes the user to a menu of models
provided by the manufacturer, where they can select the model of their EV as seen in Figure 13.

Once selected their EV manufacturer and model are shown. The user can go back to make changes or
select ‘Add Vehicle’ to update their profile with the new EV information. This is seen in Figures 14 and

15.

94 all T -

€ Login Profile

' Leslie Perez =

- lesliep_loves_EV

ChargeBnB your charger ﬁ
Y

Settings

My Vehicle >

Fig. 10 EV owner selects EV modél

9:41 Wl T =.
€ Back Manufacturer
Q‘
Sondors
Subaru

T

Tesla -‘

Think Global
Toyota
Via Motors

VinFast
Fig. 12 Select the EV Manufacturer

94 all T .

€ Back Add Vehicle

Add Your Vehicle

e

Your vehicle is used to determine compatible
charging stations.

Vehicles shown are based on:

United States

Add Vehicle

Add Later
Cant find your vehicle?

Fig. 11. Add vehicle screen
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9:41 ol T -
€ Back Add Vehicle

Cybertruck 2023
Model 3
Model S
Model X

Model Y 1

Roadster

Fig. 13 Select the EV Model

a4 all T - TeSIa

Model Y
< Login Profile Standard
. Leslie Perez =
Add Vehicle

lesliep_loves_EVs@yahoo.com
- Tesla Model Y Standard  r——
Fig. 14. Add the vehicle to profile

ChargeBnB your charger C@
Y

Fig. 15. Profile update with vehicle

4.3 User Surveys

EV Owner Walkthrough

A user that wishes to enroll in our mobile application must need to let us know if they are an EV owner or
a homeowner with a charging station. For a detailed walk-through, ‘EV user’ will be showcase first. The
user will be asked a series of questions to determine pricing information. If the user already has an
account, they will select “Yes, | already have an account” and then proceed to select “Homeowner” as
illustrated in Fig. 16.
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941 wil ¥ -

« ChargeBnB

Already have an
account?

Yes, | already have an account &

Not yet

CONTINUE

Fig. 15. User selects account information

9:41 Wil T -

« ChargeBnB

Are you a
homeowner or
an EV user?

EV user

Homeowner (V]

CONTINUE

Fig. 16. User selection enrollment
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941 il T -
Ab t 94 wil T -
out you
< P About you

What's your
average vehicle
charging cost?

How much do
you pay to fully
charge your EV?

10 dollars 20 dollars

CONTINUE CONTINUE

Fig. 17. EV user charging cost Fig. 18. EV user fully charged vehicle cost

The following questions asked to the EV owner are a series of questions to understand their battery
capacity and how much they usually pay for their vehicle.
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a4 wil T -

94 il T -
P About you P About you
What is the size Where do you
of your battery? usually charge
your vehicle?
100 kWh Home

Fig 19. EV user’s battery size Fig. 20. EV user charging location
9N il T -
«— About you e —
«— About you
Do you alter

driving habits How many
with rising minutes would
energy costs? you drive for a
20% charging

discount?

10 minutes

Yes, | change my habits

No, | maintain the same habits &

CONTINUE CONTINUE

Fig. 21. EV user habits Fig. 22. EV user willingness for 20% discount
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941

94 il T -

« About you

P About you

wil T -

How many

How many
minutes would
you drive for a
15% charging

discount?

i 0 minutes
5 minutes

CONTINUE

Fig. 23. EV user willingness for 15% discount

94 il T -

P About you

How many
minutes would
you drive for a

5% charging
discount?

0 minutes

CONTINUE

Fig. 25. EV user willingness for 5% discount

minutes would

you drive for a

10% charging
discount?

CONTINUE

Fig. 24. EV user willingness for 10% discount
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Homeowner Walkthrough
A user that wishes to sign up as a homeowner to provide a home charger will have the following

guestions for our location algorithm.

94 ol T -

« ChargeBnB

R wil T -

« ChargeBnB

Already have an ) Are you a
account? omeowhner or
an EV user?
Yes,lalready have an account 0 EV user
Homeowner Q

Not yet

CONTINUE CONTINUE

Fig. 26. User selects account information Fig. 27. User selection enroliment

Once the user selects, they are a homeowner, they will select they would like to personalize their settings.
They will proceed to select appliances from an image we set up in the mobile application. In addition to

that, they will be able to input any other appliances as seen in Fig. 30.
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A il T -

« ChargeBnB

Which settings
do you prefer for
your scheduling

suggestions?

Default settings
Personalized settings V]

Smart metering scheduling

CONTINUE

Fig. 28. User selection for settings

94 wil T -

«— About you

Enter other
appliances

Wireless speakers, AC unit, PS5

CONTINUE

Fig. 30. Users enter extra appliances

9:41 il T -

P About you

Select the
appliances you
have at home

‘ @}u ! |l

Tﬁ
e
@
&J

G I/A
m® “’.l-

CONTINUE

Fig. 29. User appliances selection

9: 41 ol T -

«— About you

At what time of
the day are you
hyperactive based
on your appliance
use?

6pm to 10pm

TV, lamps, washer, dryer, blender,
food processor, juice maker, hand
mixer, electric mop, vacuum cleane,
refrigerator, microwave.

Fig. 31. User hyperactive use



9:41 ol T -

«— About you

At what time of
the day are you
active based on
your appliance
use?

10 pm to 11 pm

TV, lamps, heater, blow dryer, fiat
iron, curly iron, speaker set,
refrigerator, microwave

CONTINUE

Fig. 32. User active use

9:41 ol T -

«— About you

At what time of
the day are you
absent based on
your appliance
use?

6 amto 6 pm

Refrigerator, microwave, coffee
maker, toaster

CONTINUE

Fig. 34. User absent use

« About you

At what time of
the day are you
inactive based on
your appliance
use?

11pm to 6 am

heater, refrigerator, microwave

CONTINUE

Fig. 33. User inactive use

9:41 Wil T -

«— About you

When are you
open to letting
EVs use your
home charger?

7am to 3pm

CONTINUE

Fig. 35. User charger openings



Users will have the opportunity to enter the times where they considered to be in different states as seen
in Fig.32-34. Then, Fig. 35 shows when they enter the time, they are willing to open their home changer to

the public.

4.4 EV Owner User Flow

From a user whose purpose is to charge their vehicle through ChargeBnB they will navigate to a few
screens making their selections as to location preferences and then choosing the most convenient
charging point withing the map containing different locations, prices and availability status.

9:41 all T ==

<« ChargeBnB

all T ==

9:41

« ChargeBnB

Allow ChargeBnB to access this

device location
Dan Harelick Studio Art
[
QFD\W Engine ;—?
52, Ladder 52 =
7]
1
)
L1es -
[-9
Precise Approximate
Q‘(oﬁq Israel of Riverdale
While using the app R
Only this time
Ethical Culture Fieldston Manhztgan GOV
School - Tate Library
Don't allow Q / - Q 9
I Fieldston Lower Schoc
Ethical Cultur
Fieldston %‘é“f o

CONTINUE ’
S

Fig. 36. asking user for privacy settings. Fig. 37. displaying charges in the area.
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9:41 il T @

< BnB 1

James Winston @

james_wins_92@gmail.com
- Level 1 Charger

4.82 % 46% 6.2kWh#%

Available $1.36/hr
Power_1 1 PN
@ 505 Delafield Ave, [\ S
Bronx, NY 104711 Directions Share
Report a Problem > ‘

Availability
7am - 3PM

Fig. 38. Point of charge chosen by Leslie

9:41 all T -m

< Map Payment Method

Ready to charge and go ?
. Add payment info to charge and go
a anywhere.

Select Plug Configuration:

: @
. Pay Google Pay
‘\ I Credit/Debit

Fig.40. Payment method chose by EV-owner

9:41 all T =)

Carl Jones =

Carl_J@gmail.com
- Level 1 Charger

4.82 x 46%@ 6.2kWh%

Power_2 H PN
QO . NY-9A, /A\ o
Bronx, NY 10471 Directions Share

Report a Problem >

=
—
pu—

Availability Suggestion
9PM - 12PM

Fig. 39. Unavailable location on the map
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As we see in fig. 39 there is a chance that a charging point is not available based on the Probability
matrix recommendation to the homeowner, since their personal power usage may be relatively high at
that time, thus unable to serve as a charging point.

4.5 EV Charger Owner User Flow

The EV charger owner’s flow consists of the notifications received from the app, and the corresponding
screens on ChargeBNB. The notifications include alerts for when somebody wants to use their charger,
when someone wants to send them an inbox message, along with updates on the charging status of any
vehicle owner using their charger.

all = -.
g 7110 ol T -
. James Winston =
Monday, June 3 B
New Message!
Leslie has sent you a new message 4.70 * 46% . 2%®
Charging Session Finished
. Leslie has finished the charging session Requests
N )
@ Chgrging in MESS ' o] t:::eMouel Y x
|y lf:lf: successfully begun to charge the a 70 stars, 1 hour Accept Decline
TR -
Arriving Soon Hostmg
Leslie is arriving at the charging location in 2 mir
Update Listing >
Someone wants to Charge! Availability >
L 4.3¢ ould like arging Host Histo
esla Model osting History )
Survey >
Inbox >
Suggestion connect your smartmeter with ChargeBN
Availability Suggestion
7AM
Fig. 41. Notifications for EV Charger Owner Fig. 42. EV Charger Owner Profile Screen

When James selects the ‘Someone wants to Charge’ notification, he will transition to his profile in the
app (Fig. 42). Under the request section, he can accept or decline any pending requests to use his
charger.
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941 ol T -

7:58 wll T -
& Profile Inbox
£ Profile Track Charging
. Leslie
Hey, you have a great set up! Thanks
Time Left Transaction # - letting me use ...
17 Minutes #1234567

No more new messages

r Leslie is on her way to your home.

Leslie has begun charging. Fig. 44. EV Charger Owner’s Inbox

941 il T -

Charging in progress. ¢ Profile  Hosting History

F

Leslie
June 3, 5:30PM-6:00PM
$3.26

. Leslie has finished charging.

Kyle
June 3, 2:30PM-3:00PM
$7.47

Fig. 43. EVSE Owner’s Charging Status Update Judith
June 1, 7:00PM-8:00PM

$15.03

No Previous Hosting Events

Fig. 45. EV Charger Owner’s Hosting History

Any of the charging update notifications will bring James to a screen that provides the live status of the
charging session (Fig. 43). James is provided with a transaction number as well as the time left on the
charging session. The new message notification will bring James to his inbox where he can view any
messages from ChargeBnB, as well as from other users (Fig. 44).

James also can view his hosting history and is presented with the name and date of the charging session
and the duration and total price that the session cost.
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5 Results and Discussion

5.1 Location Analysis

From the case study presented, this section will analyze the results that preceded the determination of
the availability of James’ household.

double STATE_O_CUTOFF = 0.1;
double STATE_1_CUTOFF 1.63;
double STATE_2_CUTOFF = 2.45;

Figure 46: James State Cut-Off Values

In Fig. 46, we can see the state cut-off values that we determined from the averages of our survey
responses. Since James chose to set up his account using default values, these are the cut-offs that will
be applied for his inputs in the questionnaire to determine his next state. These values could either be
representative of his actual data consumption or not. This is the risk assumed by users when choose to
use the default settings that we have pre-determined.

------ State Matrix ------
[1T1T1T1T11T1T1T1T111111111333331]

Figure 47: James’ State Matrix

In Fig. 47, we can visualize James’ state matrix, determined by the cut-offs and his input of appliance
usage for different hours of the day. Every index in this matrix represents an hour of his typical day. We
observe that James’ is consistently in an inactive state for most of the day, until 6 PM when he jumps to a
hyperactive state.

------ Transition Matrices ------
--- User 1 ---

[ 0.000 0.000 0.000 0.000 ]

[ 0.000 0.944 0.000 0.056 ]

[ 0.000 0.000 0.000 0.000 ]

[ 0.000 0.200 0.000 0.800 ]

Figure 48: James’ Household Transition Matrix

The transition matrix derived for James’ case, found in figure 48, is simple to understand, as his rows for
state O (row 1) and for state 2 (row 3), contain zeros across. This occurs because from his state matrix, 0
and 2 states do not make an appearance. This simplifies the calculation of the transition for these states.

The first row of the probability matrix found in Fig. 49 contains the initial state of James’ household,
which is 1 (from the state matrix). This means that there is 100% probability of James being at state 1.
The subsequent rows of this matrix, which pertain to each hour of the day, are calculated as described in
the methodology section of the location algorithm. Noticeably, as expected, the probabilities of being at
state 0 and 2 in this case, are 0 all around.
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------ Probability Matrices ------

--- User 1 ---

[ 0.000 1.000 0.000 0.000 ]
[ 0.000 0.944 0.000 0.056 ]
[ 0.000 0.903 0.000 0.097 ]
[ 0.000 0.872 0.000 0.128 ]
[ 0.000 0.849 0.000 0.151 ]
[ 0.000 0.832 0.000 0.168 ]
[ 0.000 0.820 0.000 0.180 ]
[ 0.000 0.810 0.000 0.190 ]
[ 0.000 0.803 0.000 0.197 ]
[ 0.000 0.798 0.000 0.202 ]
[ 0.000 0.794 0.000 0.206 ]
[ 0.000 0.791 0.000 0.209 ]
[ 0.000 0.789 0.000 0.211 ]
[ 0.000 0.787 0.000 0.213 ]
[ 0.000 0.786 0.000 0.214 ]
[ 0.000 0.785 0.000 0.215 ]
[ 0.000 0.785 0.000 0.215 ]
[ 0.000 0.784 0.000 0.216 ]
[ 0.000 0.784 0.000 0.216 ]
[ 0.000 0.783 0.000 0.217 ]
[ 0.000 0.783 0.000 0.217 ]
[ 0.000 0.783 0.000 0.217 ]
[ 0.000 0.783 0.000 0.217 ]
[ 0.000 0.783 0.000 0.217 ]

Figure 49: James’ Household Probability Matrix

At what time would it be okay to allow others to charge their vehicle?
7
At what time would you like to end all charging sessions for vehicles?
13

Fig. 50. Algorithm request for availability time

------ Consumption Matrix ------

[ 0.000 0.810 0.000 0.190 1]
[ 0.000 0.803 0.000 0.197 ]
[ 0.000 0.798 0.000 0.202 ]
[ 0.000 0.794 0.000 0.206 1]
[ 0.000 0.791 0.000 0.209 ]
[ 0.000 0.789 0.000 0.211 ]
[ 0.000 0.787 0.000 0.213 ]
[ 0.000 0.786 0.000 0.214 ]

Figure 51: James’ Consumptidn Ma;crix

Given that James’ input for availability were the times 7AM-3PM, this consumption matrix in Fig. 51 is a
subset of the probability matrix in Fig. 49, corresponding to James’ desired hours of availability

-‘Based on the information provided, 7AM is the best hour.

Figure 52: Location algorithm final determination/output
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The final determination of a time suggestion for James is found on figure 52 to be 7AM. Looking at the
consumption matrix to understand how this determination is reached. We can observe that 7AM, being
the first row of the matrix, has the highest probability of James being either in state 0 or state 1.

5.2 Price Analysis

Using the case study in Section 4, the following results were determined for the EV charging using the
EEGD pricing algorithm discussed in section 3.3.

Inputs obtained from the ChargeBnB application

The inputs for the pricing are obtained from the user details provided in the application. When the user
opens the map to locate a charger the GPS determines the users distance from each charger, and
estimates the time to arrive. The rating for the location being assessed is also provided from the
application. A rating and price average is calculated based on the charging stations in the area. Based on
the EV make and model and estimated SoC, an energy value is calculated.

e time =10 minutes | The time needed to reach the assessed EVSE location

e rating =4.82 | The rating of the EVSE location being assessed

e R avg=4.7 | The average rating of nearby EVSE locations

e E=30.8 | The energy needed to charge the Tesla Model Y

e p=1315 | The average market price of nearby public charging stations

Data calculated based on inputs
From the inputs provided the following data is calculated to facilitate the creation of the initial state
matricies and determine the escort functions used.

e p_max=51.3605/ kWh | Using equation 3
e p_min=50.9205/kWh | Using equation 4
e @, =0.1799In(x) + 0.6171 | From Table 1, time =10
o Y, =1.026 | Using equation 8

Prices calculated based on inputs:

The initial state vector for the supply and demand prices are created with the strategies ranging from
p_min to p_max, and the population proportion (0.0222) equally split between all strategies as seen in
Figure 52.

state vector: [(©.9205, 0.02222222) (0.9305, ©.02222222) (0.9465, ©.62222222)

(0.9505, ©.02222222) (0.9605, ©.02222222) (©.9705, 0.62222222)
(0.9805, ©.02222222) (0.9905, ©.02222222) (1.0005, 0.02222222)
(1.0105, ©.02222222) (1.6205, ©.02222222) (1.0305, 0.62222222)
(1.0405, ©.02222222) (1.8505, 0.02222222) (1.0605, 0.02222222)
(1.6705, ©.02222222) (1.6805, ©.02222222) (1.0905, 0.02222222)
(1.1005, ©.02222222) (1.1165, ©.02222222) (1.1205, 0.62222222)
(1.1305, ©.02222222) (1.1405, ©.02222222) (1.1505, 0.02222222)
(1.1605, ©
(1.1905, ©
(1.2205, ©
(1.2505, ©

0

0

.02222222) (1.2005,
.92222222) (1.2365,
.92222222) (1.2605,
(1.2805, ©.02222222) (1.2905,
(1.3105, ©.02222222) (1.3205, ©.02222222) (1.3305, 0.02222222)
(1.3405, ©.02222222) (1.3505, ©.02222222) (1.3605, 0.62222222)]

Fig, 52. Initial state matrix for both EV and EVSE strategies

.02222222) (1.2105,
.02222222) (1.2405,
.02222222) (1.2705,
.02222222) (1.3005,

.02222222)
.02222222)
.02222222)
.02222222)

(%) %)
(%) %)
(%) (%)
(%) %)
(%) %)
(%) (%)
.02222222) (1.1705, ©.02222222) (1.1805, 0.02222222)
(%) %)
(%) %)
(%) %)
0 0
(%) %)
(%) %)
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Price and Population Evolution

0.5 { —@— Evolution 1
—o— Evolution 2
—e— Evolution 3
0.4 1 —®— Evolution 4
—8— Evolution 5
s
B 0.3 1
o
Q
<
o
2 0.2 1
a.
0.1 A
0.0 1
0.9 1.0 1.1 1.2 1.3

Price (pr)
Fig. 53. Evolution of prices and population
After each evolution of the algorithm, the state vector changes. The population proportion associated

with each prices is adjusted to by both the payoff function and the associated escort function. The
changes in states for the EVSE owner can be seen in Figure 53.

TABLE 3: PRICES AND ASSOCIATED POPULATION PERCENTAGES
Price EVSE % Pop EV % Pop

0.9205 0.00% 29.11%
0.9305 0.00% 20.85%
0.9405 0.00% 14.56%
0.9505 0.00% 9.86%
0.9605 0.00% 6.44%
0.9705 0.00% 6.18%
0.9805 0.00% 4.52%
0.9905 0.00% 3.44%
1.0005 0.00% 2.77%
1.0105 0.00% 2.40%
1.0205 0.00% 2.22%
1.3005 0.00% 2.17%
1.3105 0.00% 2.16%
1.3205 1.17% 2.16%
1.3305 5.67% 2.16%
1.3405 14.37% 2.16%
1.3505 28.66% 2.16%

1.3605 50.13% 2.16%



The prices determined by the EEGD algorithm can be seen in Table 3. The initial population distribution
for both EV and EVSE owners was 2.22% across all prices.

The table shows that for the EV owner the most preferred price is $0.9205/kWh at 29.11%. With the
next price of $0.9305/kWh at 20.085%. For the EV owner, the distribution for the prices remains higher
than the initial value up to $1.0205/kWh which has a distribution equal to the initial value. At that point,
the distribution levels off at 2.16% for the remaining prices.

The distribution does not decrease to 0% for the higher prices due to the escort function accounting for
the market prices, and adjusting EV owner strategy results based on the nearby market prices.

The table shows that the EVSE owner population distribution is 0% for all prices below $1.3105/ kWh,
and is the maximum level of 50.13% for the maximum price of $1.3605/ kWh. The EVSE owner was not
incentivized to lower his price as his charging station had a higher than average user rating.

Therefore, the price chosen to present to the EV owner on the ChargeBnB application in the case study is
$1.3605/ kWh. As all prices where both the EV and EVSE owners have a non zero population
distribution, the EV owner has the same distribution of 2.16%. If there are no prices that have a
population distribution > 0% for both users, then the lowest EVSE price will be used.

5.3 Data Analysis
Our collected data concluded that 84% of our participants had fossil fuel or a hybrid vehicle while 16%
owned an electric vehicle.

I Fossil Fuel and Hybrid
I Electric Vehicle

84%
Figure 1. Participant vehicle types

Our Con Edison electricity rate for The Bronx was gathered from 14 different participants to averaged out
the tariff that is usually paid by customers. Table 3 illustrates the amount paid for the billing period from

October to November, the kWh they used for the billing period, the total rate and in what zip code in The
Bronx they are located. Our average rate was set to be 0.4575 cents per kWh.

To calculate the total rate, we used formula #:

Amount paid

Totalrate = T eWh eq.32

For the average rate, we performed formula #:
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N
1
Electric average = NE Rate, eq.33

x=1

e N:total number of customers

e X:user number

® Rate,: rate for user x

TABLE 3. CON EDISON ELECTRICITY RATES FOR THE BRONX

User Amount Paid kWh Total Rate Zip code
1 154.12 458 0.33650655 10451
2 96.99 261 0.371609195 10452
3 190.98 510 0.374470588 10453
4 416.31 1165 0.357347639 10454
5 49.33 83 0.594337349 10457
6 50.21 92 0.54576087 10458
7 114.69 287 0.399616725 10458
8 72.13 157 0.459426752 10460
9 41.89 63 0.664920635 10461
10 76.53 157 0.487452229 10463
11 94.61 264 0.358371212 10463
12 121.77 294 0.414183673 10465
13 181.39 498 0.364236948 10468
14 128.07 380 0.337026316 10469

Furthermore, we computed the State of Charge (SoC) for the top 10 electric vehicle models as listed by
[20]. These specific models were selected for their demand in the market, being among the highest-selling
EVs in 2022, and representing a diverse array of models. Table 4 depicts the list of cars. For our study we
selected the SoC when the vehicle is at home.

TABLE 4. ELECTRIC VEHICLE MODELS

% SoC
User Model Battery Capacity kWh Home Workplace Public Charger

1 Tesla Model Y - RWD 60 24.60 28.68 23.46

2 Tesla Model 3 - RWD 50 20.50 23.90 19.55

3 Ford M”S;?,CgMaCh'E ; 68 27.88 32.50 26.59

4 Chevy Bolt EV/EUV 65 26.65 31.07 25.42

Tesla Model S - RWD 85 34.85 40.63 33.24

6 Tesla Model X - 90D 100 41.00 47.80 39.10

7 Hyundai lonig5 - SE 58 23.78 27.72 22.68
Standard

VW ID.4 - RWD 58 23.78 27.72 22.68

Kia EV6 - RWD 58 23.78 27.72 22.68

10 Rivian R1T - AWD 105 43.05 50.19 41.06
Standard

Average 28.99 33.79 27.64
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Furthermore, the market prices for 37 charging stations located in proximity to Riverdale were computed
and averaged out to be 1.3242. (See Appendix A for table)

6 Conclusion

In our research paper, we introduce ChargeBnB, a novel mobile application designed to facilitate EV
charging by connecting EV owners with residential EVSE owners. ChargeBnB provides users with the
price and location of available chargers, connecting users who need to charge their EV with owners of EV
charging equipment.

In order accomplish this a dynamic pricing algorithm using escort evolutionary game dynamics is used to
present a customized price to the user based on their specific data such as location, car type, and rating
of the charging location. Additionally, a Markov chain-based stochastic algorithm was used to determine
the optimal time for EVSE owners to allow EV charging, thus updating the location of available chargers
dynamically. Empirical data informs our algorithmic assumptions.

Our case study demonstrates that EV and EVSE owners can conveniently arrange charging sessions
through the app at mutually agreed prices, times, and locations. The app adapts to user needs and
preferences, with ongoing data collection through user survyes, enhancing algorithm accuracy for time
and price recommendations.

Future improvements include incorporating machine learning for increased accuracy, additional features,
and an enhanced user experience.
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Appendix A

Table #. Market price for charging stations

No. Price (kWh) Name Location Note
0.25(12amto 8 am)
1 0.30 (8 am to 10 pm) NYC FLEET/DPR_VCP-S2 10471 1 charger
0.25 (10 pm to 12 am)
5 023 SKYVIEW APARTME / 10471 2 Chargers / Difficult to find
' SKYVIEW ST2 (reviews)
3 0.23 SKYVIEW APARTME / 10471 2 Chargers / I?lfﬁcult to find
SKYVIEW ST1 (reviews)
0.25(12amto 8 am)
4 0.30 (8 am to 10 pm) NYC FLEET / DPR_VCP-S1 10471 1 charger
0.25 (10 pm to 12 am)
Idle fee of $10 per hour, one
i d for level 2
5 0.5 Briar Oaks 10463 | 'CVIeWsays goodiorievel s,
another one says could not
find chargers
AUA-10311: 6amto9 pm:
$2.50/hrn9 pmto 6 am:$1/hr
AUA-10296: 6 am to 9 pm :
$2.50/hrn9 pmto 6 am:$1/hr
Bronx Van Cortlandt .
6 . 10468 4 stations
Village
AUA-10328: 6 am to 9 pm :
$2.50/hrn9 pmto 6 am:$1/hr
AUA-10322: 6 am to 9 pm :
$2.50/hrn9 pmto 6 am:$1/hr
AUA-10300: 6 am to 9 pm :
$2.50/hrand 9 pmto 6am:
S1/hr Dekalb Ave .
7 . . 10467 2 stations
AUA-10283: 6 am to 9 pm : Parking/Charging
$2.50/hrand 9 pmto 6am:
S1/hr
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https://driver.chargepoint.com/stations/7980041
https://driver.chargepoint.com/stations/5600361
https://driver.chargepoint.com/stations/5600231
https://driver.chargepoint.com/stations/7980111
https://www.plugshare.com/location/495443
https://www.plugshare.com/location/346243
https://www.plugshare.com/location/334654

AUA-10290: 6 am to 9 pm :
$2.50/hrand 9 pmto 6am:
S1/hr

AUA-10293: 6 amto 9 pm :
$2.50/hrand 9 pmto6am:
S1/hr

Putnam PI
Parking/Charging

10467

2 stations

$4.00/session, time limit 8 h

New York Botanical
Garden - Parking Garage

10458

1 station, 2 plugs / $17 parking
Tues-Friday, and $20 Satur-
Monday

10

AUB-19082: $3.00 (USD) per
hour for first 1 hour(s)
and $10.00 (USD) per hour
after 1 hour(s)

AUB-19098: $3.00 (USD) per
hour

AUB-19111: $3.00 (USD) per
hour

AUB-19121: $3.00 (USD) per
hour

AUB-19122: $3.00 (USD) per
hour

AUB-19120: $3.00 (USD) per
hour

Popeyes

10469

6 stations

11

12:00 AM-5:59 AM - $2/kWh

6:00 AM-9:59 PM - $1/kWh

10:00 PM-11:59 PM - $2/kWh

Key Food Supermarket

10461

1 station

12

0.46

Northeast Bronx YMCA

10466

Proximate to 10467 - 4
stations, has some bad reviews

13

0.35/kWh + While charging:
2.00/hr (after 9:00 PM) + While
charging: 2.00/hr (12:00 AM-
6:00 AM) + While parked, not
charging: 25.00/hr after 45
mins (7:00 AM-11:55 PM)

Yonkers Police
Department

10705

Proximate to 10471

14

$2.00 (USD) per hour

Warburton Garage

10701

11 Stations - Proximate to
10471
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https://www.plugshare.com/location/324873
https://www.plugshare.com/location/7703
https://www.plugshare.com/location/483405
https://www.plugshare.com/location/60675
https://www.plugshare.com/location/359924
https://www.plugshare.com/location/520509
https://www.plugshare.com/location/484749

Appendix B
Location Algorithm Flow Chart
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