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Abstract 

The research introduces an alterna4ve mobile applica4on, ChargeBnB, employing an escort evolu4onary 
game dynamic pricing algorithm and a Markov chain-based stochas4c model for loca4on determina4on. 
The pricing algorithm op4mizes charging prices for EV and EVSE owners based on profit mo4ves and 
externali4es. Data gathered from surveys of 25 Households and drivers, including behavior and 
appliance usage, refines the algorithms. A case study demonstrates user experience, and the paper 
outlines the applica4on's future overview. The proposed solu4on, combining dynamic pricing and 
strategic loca4on determina4on, contributes to efficient EV charging resource alloca4on, increased 
revenue for EVSE owners 

1 Introduc/on  

In response to the growing environmental concerns associated with fossil fuels, various companies have 
increasingly introduced electric vehicles (EVs) to the market. EVs have emerged as a sustainable alterna4ve 
to tradi4onal fossil fuel cars, primarily due to their poten4al to reduce greenhouse gas emissions. EVs 
charging sta4ons (CS) are increasing fast, however, in metropolitan ci4es such as New York City, there are 
limita4ons for CS due its infrastructure, however, in this paper we are aiming to offer a possible solu4on 
to this problem.  

This project intends to develop the idea of shared home charging, specifically on enabling electric vehicle 
owners to find and use CS offered by homeowners, who open their home chargers for EVs that need a CS 
and explore the challenges and feasibility of implemen4ng a home charging system for EV users. Our study 
presents a case study that showcases how our idea is implemented in a mobile applica4on design on 
Figma. We gather user’s informa4on through a brief survey on the app and implement two algorithms 
from their answers: pricing and loca4on. The pricing algorithm will let the EV owner see loca4ons in the 
mobile applica4on where home chargers are available alongside their costs and reviews. In the other hand, 
the loca4on algorithm will let users register as a home charger facility and allow them to make profit out 
of their charger by lecng other EV users u4lize the charger in the 4mes the homeowner sets. 

2 Literature Review  

Incen4vizing EV owners to charge at specific loca4ons and 4mes presents a significant challenge that 
numerous en44es, ranging from researchers [1][2] to governmental organiza4ons, have sought to 
address. This includes ini4a4ves such as the Biden-Harris EV Charging Ac4on Plan [3] and Governor 
Hochul’s charging discount program [4]. 

Our mobile applica4on provides a plagorm for electric vehicle (EV) owners to find and use residen4al 
charging sta4ons. Thus, the various methods of encouraging charging has been inves4gated. One such 
method, pricing, is analyzed in the next sec4on.  

Through our literature review, it has been determined that price-based incen4ves, which encompass 
various models can be categorized into two main groups: 1) types of pricing incen4ves, and 2) price 
determina4on. Our objec4ve was to determine the best incen4ve structure, and price determina4on 
methodology for our applica4on. 
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Pricing Incen*ve Structure: 
The 4me of use (TOU) model is one approach where [5] explores the development of a dynamic TOU 
pricing strategy, focusing on user sa4sfac4on. This strategy considers user travel and charging paherns to 
devise a TOU strategy tailored to a specific loca4on. However, the analysis incorporates EV owner needs 
on an aggregate level, without providing any individual user specificity. In addi4on, demand response 
programs, as discussed in [6], propose the use of EV bahery switching to further reduce the overall 
community load. Addi4onally, subscrip4on models, offered by companies like EVCS, are another op4on, 
but is most beneficial for large scale EVSE owners. Finally, dynamic pricing models that account for 
variables such as grid supply and demand constraints are examined in [7][8]. 

Upon review of the current state of technology discussed above, we chose to use dynamic pricing for the 
ChargeBnB pricing structure. This structure mirrors models seen in public applica4ons like Airbnb and 
Uber. Once the structure was decided, a price determina4on methodology based on the selected 
incen4ve structure was selected based on the discussion below.  

Price Determina*on: 
Dynamic pricing models can vary widely and include formula4ng the pricing challenge as a Markov 
Decision Problem and presen4ng several solu4ons such as Q-learning and actor-cri4c as proposed in [9]. 
However, this model requires there to be a known state transi4on probability, an externality such as 
compe4tor pricing was not considered. The authors of [10] propose an approach that op4mizes the EVSE 
owners profit based on the reduc4on of the owner’s peak load. This benefits the EVSE owner but does not 
incen4vize EV owners to charge. Escort evolu4onary game theory is proposed in [11] using the algorithm 
to adjust prices based on the needs of EV owners and the system owner through an aggregator. While this 
model does not specifically use charging price to incen4vize charging, the dynamic and customizability 
provide the best op4on for the ChargeBnB plagorm.  

Aler evalua4ng the current state of technology as outlined above, we have chosen to implement the 
dynamic pricing model based on the escort evolu4onary game dynamics detailed in [11]. This model 
provides a flexible method to establish the op4mal price for EV and EVSE owners based on their profit 
and savings mo4ves as well as individual externali4es. Addi4onally, this model excels when empirical 
data can be used to augment the escort func4ons. Thus adjus4ng strategy performance to allow for 
tailored pricing, which improves in accuracy as it incorporates increasing amounts of usage data over 
4me.  

Data Acquisi*on: 
To be able to effec4vely schedule the charging of vehicles, it is important to understand the energy 
consump4on of the homeowner. [14] developed a representa4ve schedule only for HVAC appliances for 
future diagnos4cs. [18] as well, only considered HVAC systems and assumed that an aggregator collects 
the required informa4on on energy consump4on and these systems were the main factors in 
understanding overall energy demand for planning EV infrastructure.  

 It is important to consider different factors when scheduling EVs to a charging sta4on, in our case, to a 
home charger. Reference [15] highlights the necessity of situa4ng charging sta4ons in areas with ample 
parking by analyzing houses and EVs dimensions. According to [16], installing Level 2 chargers in private 
and residen4al spaces is advised to reduce the complexity and need for u4lity company approval for fast 
charging sta4ons, which could deter homeowners. The "EV Project," a study cited in [13], inves4gated the 
driving and charging habits of Nissan LEAF drivers in 2012, revealing that most charging typically occurs 
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when the EV's State of Charge (SoC) is between 50% to 60%. However, this data was collected with a public 
database. Conversely, [12] analyzed EV charging paherns using the 2017 Na4onal Household Travel Survey 
(NHTS) data, finding that charging usually starts at 41%, primarily when the SoC is between 40% to 50%. 
This study also noted that the average SoC at workplace and public charging sta4ons is 47.8% and 39.1%, 
respec4vely. [17] observed a preference among drivers for charging sta4ons on local streets rather than 
highways when SoC is low, emphasizing the importance of strategically placing sta4ons in suburban areas. 

The above-men4oned literature reveals that there are not enough factors taking place in the scheduling 
system of EVs to a charging sta4on. It is important to increase the number of appliances for host homes 
when opening their chargers. None of the works men4oned in this literature review consider a vast 
number of appliances, nor gathered exact home energy consump4on data, nor gathered personalized data 
to accommodate users. In the other hand some of the works men4oned helped us to concretely gathered 
the necessary data for the algorithms presented in this paper such as, [15] that emphasized the 
significance of focusing on suburban regions for developing residen4al charging models, par4cularly in 
areas with higher income levels. Specifically, the study highlighted the need to target homes that have 
both parking spaces and charging facili4es.  

Based on these discoveries, for our acquired data we decided to: 

1. Survey several par4cipants to accommodate based on homeowner preferences. 
2. Consider a vast number of appliances based on par4cipants answers. 
3. It is necessary to consider electricity rates into our scheduling systems according to homeowners’ 

electricity bill.  
4. Study areas with a higher income. In our analysis, areas like Riverdale in The Bronx, characterized 

by an average household income of approximately $126,300 and a median income of $79,708, 
were par4cularly relevant for our research [19]. 

5. Consider market prices of charging sta4ons in selected areas to base homeowner’s charger rates 
on this. 

Loca*on Determina*on: 
For a homeowner to u4lize the ChargeBNB service as a source of income, they must consider their 
home’s availability for charging. Two important factors to be examined in this decision include their 
lifestyle/personal schedule and their home energy consump4on paherns to avoid problems such as 
obstruc4ng their personal rou4ne, as well as causing stress to their electrical system. Many approaches 
have been studied when it comes to the scheduling problem of household appliances with the ul4mate 
goal of reducing energy consump4on at peak grid 4mes for users. Fuzzy Logic Controller methods for 
home energy management con4nue to grow in popularity as they facilitate the considera4on of user 
comfort and the EV’s SoC for future needs [25]. For systems with already implemented variable 
renewable energy, other ideas for the future suggest U4lity Controlled Charging (UCC), where charging 
of EV’s only occurs during 4mes of excess renewable energy [23]. These proposals, however, exclude the 
possibility of user par4cipa4on without the incorpora4on of smart devices in their home.  

Less intrusive methods, like recommenda4on algorithms that suggest when and where to charge EVs are 
now in the conversa4on for the use of energy in a more efficient manner. Chained recommenda4ons 
based on classifica4on levels combat the frequency of conges4on when arriving at charging sta4ons for 
EV drivers and help the distribu4on of EVs amongst sta4ons during such events [24]. Taking the grid into 
considera4on, with the rise of EV usage, op4miza4on problems for EV charging sta4ons to shave peak 
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loads are also explored [21]. These methods address energy efficiency from the perspec4ve of charging 
sta4ons that work on different schedules than a homeowner might. For that reason, recommenda4ons 
that are more geared towards home charging applica4ons are in the best interest of ChargeBNB, since 
users that are more informed about their energy consump4on, as well as off-peak and on-peak hours, 
tend to make beher decisions about their 4me of charging [26]. 

Markov’s Chain-based stochas4c model approach proposed in [27]  resolves some of the concerns 
expressed above.  Using only user’s ac4vity pahern, this algorithm predicts the likelihood of a household 
being in a specific ‘energy state’ (ranked from least ac4ve to most ac4ve), based on their previous state. 
These Markov methodologies can be used in conjunc4on with publicly available data and weather-
related factors to predict household consump4on [22]. This is not the only way, however, to obtain the 
inputs needed for this algorithm. Allowing users to be surveyed reduces the need for every par4cipant of 
ChargeBNB to own a smart meter to understand their energy behavior. While [27] goes as far as 
calcula4ng and predic4ng the energy consump4on in kWh of the household, the probability of being in 
an energy state is sufficient for the purposes of this applica4on. For this reason, this paper explores the 
implementa4on of a Markov chain-based stochas4c model for the sugges4on of a ‘best-4me’ for a home 
to be available for charging, based on empirical data collected from user describing their energy usage 
and allowing them to input their available 4mes to address user comfort.  

3 Methodology  

3.1 Overview  

ChargeBnB introduces an innova4ve approach aimed at enhancing the accessibility of charging sta4ons 
for electric vehicle (EV) drivers, augmen4ng revenue opportuni4es for homeowners who invest in 
Electric Vehicle Supply Equipment (EVSE), and enabling more effec4ve distribu4on of electrical loads 
from EV charging across the grid. This is achieved by developing a mobile applica4on, to meet the needs 
of both EV and EVSE owners, enabling them to efficiently nego4ate charging arrangements. 

The research paper details the essen4al features of the mobile applica4on, underscoring its role in 
valida4ng the viability and effec4veness of our novel approach to alloca4ng EV charging resources. Key 
func4onali4es of the applica4on include: 

1. The applica4on of an escort evolu4onary game dynamic pricing algorithm, which plays a pivotal 
role in determining a mutually acceptable charging price for both par4es involved. 

2. A Markov chain-based stochas4c model is used to determine the loca4on, ensuring that EV 
owners are presented with privately-owned charging sta4ons in proximity to them, in line with 
the availability and scheduling preferences of the EVSE owners. 

3. To refine the parameters of these algorithms, the study leverages empirical data collected from 
surveys. Addi4onally appliance informa4on and EV SoC data was collected.  

Aler a descrip4on of the methods and data we present a case study demonstra4ng the user experience 
(UX) and flow of applica4on for both the EV owner and the EVSE owner. Finally, the loca4on, pricing, and 
data analysis from the case study are discussed. 
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3.2 Price Determina3on  

Escort Evolu*onary Game Dynamics 
Escort evolu4onary game dynamics (EEGD) is a modified approach to the standard evolu4onary game 
dynamic algorithm. EEGD models the evolu4on of strategies within popula4ons. Interac4ons within 
popula4ons using each strategy causes evolu4ons as the propor4on of the popula4on using a strategy 
shil with each interac4on.  EEGD extends this process by using escort func4ons to adjust the influence 
of different strategies based on external factors or condi4ons. This enables more real-world modeling 
based on available data. The standard EEDG func4on, which demonstrates the rate of change of the 
popula4on propor4on using strategy k can be seen below in equa4on 1. 

�̇�! =	𝜑!(𝑥!)(𝑓!(𝒙) −	𝑓�̅�(𝒙)	 𝑒𝑞. 1 

Where:  

• 𝑥!  is element k of the state vector of por4ons of the popula4on following pure strategy, k.  
• 𝜑!(𝑥!) is the escort func4on associated with strategy k, which modulates the growth rate based 

on the strategy’s performance. 
• 𝑓!(𝑥!) is the payoff func4on for strategy k, which determines the benefit of playing strategy k 

given the current state x. 
• 𝑓�̅�(𝑥!) is the weighted average payoff across all strategies, weighted by the escort func4on. 

Using EEGD our methodology includes novel algorithms for determining the EV charging price. This is the 
contractual price agreed upon by both the EVSE owner and the EV owner with which to charge the 
vehicle where the payoff for each popula4on group does not go below zero. In addi4on, external factors 
such as local market prices, ra4ngs, and distance to the charging sta4on are used to augment the payoff 
to determine a more accurate price.  

The escort evolu4onary game dynamic (EEGD) is designed using the methodologies described in [1]. The 
algorithm is modified so that the payoff func4on is instead the charge price from the perspec4ve of the 
buyer and seller. Equilibrium is reached when the rate of change of the popula4on propor4ons is less 
than 1%. The escort func4ons were determined using a trendline based on the empirical data. The data 
used was gathered from our surveys which are discussed in Sec4on 3.4.  

State Vector 
The state vector (eq, 2) for EV owners is a vector indica4ng the propor4on of the popula4on following 
strategy k. Therefore, there are k elements in the vector, and the sum of the elements must equal to 1. A 
similar vector, y, is used for EVSE owners. In our model, there are 2 popula4on groups which must have 
their strategies converge in the EEGD: 1. The EV owners who want to charge at lowest possible price, and 
2. The EVSE owners, who want to sell at the highest possible price. Each strategy in the algorithm is a 
dis4nct price at which charging will occur.  Each element in the state vector, x, represents the por4on of 
the popula4on using strategy (price) k. The ini4al state vector is set manually to start the evolu4ons. 
Each evolu4on changes the propor4on of the popula4on, 𝑥!, using each strategy by �̇�! +
	∆𝑡, 𝑤ℎ𝑒𝑟𝑒	∆𝑡 = 1.  

The number of strategies is determined by the range of prices being considered for EV charging. These 
prices are constrained within the bounds of pmax and pmin described in below in equa4ons 3 and 4. 
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𝑥 = [𝑥", 𝑥#, … , 𝑥$]% 	 	𝑒𝑞. 2 

𝑝_𝑚𝑖𝑛 = 𝑚𝑎𝑥{𝑝& ≥ 𝐶, 	𝑝D ∗ .7}	 𝑒𝑞. 3	

𝑝_max = 𝑚𝑖𝑛 {pM ∗ 1.3,
𝑉
𝐸
)		 𝑒𝑞. 4 

Where: 

• pM  is the average market price of charging at public charging sta4ons in the surrounding area 
($/kWh). The adjustments applied (.7, and 1.3) are to encompass the range of charging sta4on 
prices.  

• V is the maximum value the EV owner assigns to a fully charged vehicle ($) 
• E is the energy required to fully charge the vehicle (kWh) 

Payoff Func*on 
The payoff func4ons (eq. 4-5) are used to determine the fit of each strategy. The payoff for the EV owner 
(𝑓!) demonstrates that their price maximum is based on the total u4lity that they gain from having a fully 
charged vehicle. This u4lity decreases as the price they must pay increases.  

For EVSE owners the payoff func4on (𝑔!) represents the profit they make. Profit increase with the price, 
but this is not infinite. When the price is above what EV owners are willing to accept, no profit is made.  

𝑓!(𝑥) = 𝑉 − 𝑝' ⋅ 𝐸	 𝑒𝑞. 5 

𝑔!(𝑦) = (𝑝& − 𝐶) ⋅ 𝐸	 	𝑒𝑞. 6 

Where: 

• pc = the price EV charger owners want to charge ($/kWh) 
• pb = the price at which EV owners will buy ($/kWh) 
• k = the strategy used (each discrete price, pc and pb) 
• V = maximum value the EV owner assigns to a fully charged vehicle ($) 
• E = the energy required to fully charge the vehicle (kWh) 
• C = the cost of providing the charging service ($/kWh) 

Escort Func*on 
The escort func4on used to adjust the payoff growth rate of the EV owner’s strategies was created by 
curve ficng the empirical data gathered in the surveys.  

The distance that the EV owner must travel to the EVSE requires a specific escort adjustment (TABLE 1) 
as users adjust their u4lity for charging based on the inconvenience. 

The escort func4on used to adjust the payoff growth rate of the EVSE owner’s strategies was created by 
using the ra4ng of the EVSE owner versus the average ra4ng of the surrounding chargers. The empirical 
data indicated that the charging sta4on ra4ng mahered to users. However, no equa4on could be curve 
fit. Therefore, the simplified equa4on (eq. 8) seen below was used for all strategies greater than	�̂�. 

 

TABLE 1: ESCORT FUNCTIONS PER TIME TO CHARGER 
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Time 
(min) 

Discounts (%) Escort Functions y = 𝜑! 
5% 10% 15% 20% 

0 0.462 0.308 0.154 0.038 y = 1.3054e^(-16.3x) 
1 0.577 0.308 0.154 0.038 y =-0.085ln(x) - 0.1573 
2 0.077 0.077 0.077 0.038 y = -0.021ln(x)+0.0211 
3 0.038 0.077 0.038 0.000 y = -0.025ln(x) - 0.0157 
5 0.154 0.231 0.154 0.192 y = 0.0769x + .1731 
6 0.038 0.038 0.000 0.000 y = -0.032ln(x) - 0.0507 
7 0.000 0.000 0.000 0.038 y = 0.021ln(x) + 0.0558 

7.5 0.000 0.000 0.038 0.038 y = 0.0318ln(x) + 0.0892 
8 0.000 0.038 0.000 0.000 y = -0.004ln(x) + 0.0017 

10 0.077 0.192 0.308 0.308 y = 0.1799ln(x) + 0.6171 
15 0.038 0.000 0.231 0.192 y = 0.1415ln(x) + 0.4269 
20 0.000 0.000 0.000 0.115 y = 0.063ln(x) + 0.1675 
30 0.000 0.038 0.000 0.038 y = 0.0174ln(x) + 0.0575 

Where: 

• y is the popula4on adjustment based on the 4me and discounts. 
• Time is the 4me it takes the EV driver to reach the EV charging loca4on based on the mobile 

applica4on’s GPS data. 
• x (eq. 7) is the discount needed for the 4me inconvenience. This discount is based on the current 

strategy being adjusted and the maximum strategy price, 𝑝_𝑚𝑎𝑥. 

𝑥 =
𝑝()* 			 − 𝑝'
W𝑝,-. + 𝑝'2 X

		 	𝑒𝑞. 7 

𝜓!(𝑝&) =
𝑟𝑎𝑡𝑖𝑛𝑔
𝑅-/0

	 	𝑒𝑞. 8 

Where: 

• ra4ng is the star ra4ng of the EVSE loca4on assessed. 
• 𝑅-/0 is the average star ra4ng of the surrounding EV charging loca4ons. 

Weighted Average Payoff Func*on 
The average of the payoffs across all strategies weighted by associated escort func4ons (𝑓�̅�(𝑝')	 and 
�̅�	𝜓(𝑝&) ) was calculated using equa4on 9 and 10 below. 

𝑓�̅�(𝑝') =
∑ 𝑤!1
!2"

∑ 𝑥!1
!2" 𝜙!

	 𝑒𝑞. 9 

�̅�𝜓(𝑝&) =
∑ 𝑣!1
!2"

∑ 𝑦!1
!2" 𝜓!

	 𝑒𝑞. 10 

𝑤! = 𝑥! × 𝜙! × 𝑓! 	 	𝑒𝑞. 11 

𝑣! = 𝑦! × 𝜓! × 𝑓! 	 	𝑒𝑞. 12 
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Dynamics 
The ini4al propor4ons are set for state vectors x and y for the first itera4on. The payoff func4on, escort 
func4on, and weighted average escort func4on are calculated for each strategy. Alerwards, the rate of 
change of the popula4on for each strategy is calculated. The new state vectors are created by adding the 
rate of change to the corresponding strategy propor4on (eq. 13 and eq. 14).  

𝑥" = 𝑥3 + Δ𝑡 × �̇�	 𝑒𝑞. 13 

𝑦" = 𝑦3 + Δ𝑡 × �̇�	 	𝑒𝑞. 14 

3.3 Loca3on Determina3on 

Loca*on Determina*on 
We have chosen a Markov chain-based model in order to predict a user’s home energy consump4on in 
the future. In order to do this, we gathered data that described the user’s energy ac4vity during specific 
4mes of the day. This energy (in kWh) is then converted into states, where the defini4on of each state 
can be found in Table 2.   

TABLE 2: STATE DEFINITIONS 

State  Descrip4on 

0 Absent 

1 Inac-ve 

2 Ac-ve 

3 Hyperac-ve  

 

This informa4on is used to construct a transi4on matrix for this user, which is the tool u4lized to predict 
their future ac4vity (next state) based on only their current ac4vity (current state). These probabili4es 
are used to create an educated sugges4on to a homeowner of when they should make their home 
available to others for charging EVs. The mathema4cal process and defini4ons for each step of this 
algorithm is carried out below: 

 

Transi*on Matrix 

𝑃𝑖,𝑗 =
𝑁𝑖,𝑗

∑ 𝑁𝑖,𝑘3
𝑘=0

	 𝑒𝑞. 15 

𝑃4,6  is the probability of transi4oning from state i to j. Where, 0 < 𝑃4,6  < 1. 

𝑁4,6  is the number of transi4ons from state i to state j  

𝑁4,! is the number of transi4ons from state i to state k, where k iterates from 0 to 3 (actual states). 
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We use eq. 15 to populate our transi4on matrix shown below which represents all the probabili4es of a 
user changing from a certain state directly into a different state independently. For instance, the 
probability of a user in state 0 transi4oning directly into a state 3 is represented by 𝑃3,7 

𝑇𝑀 = $

𝑃0,0 𝑃0,1 𝑃0,2 𝑃0,3
𝑃1,0 𝑃1,1 𝑃1,2 𝑃1,3
𝑃2,0 𝑃2,1 𝑃2,2 𝑃2,3
𝑃3,0 𝑃3,1 𝑃3,2 𝑃3,3

% 	 𝑒𝑞. 16 

 
Probability Matrix 
The probability matrix is composed of  

𝑠=(𝑡) = 	 [𝑃3(𝑡) 𝑃"(𝑡) 𝑃#(𝑡) 𝑃7(𝑡)]	 𝑒𝑞. 17 

Where, u represents a specific user and t is a certain 4me during the day. We obtained this from the 
survey. For instance, at 4me 0 it will look like the equa4on below, 

𝑠=(0) = 	 [𝑃3(0) 𝑃"(0) 𝑃#(0) 𝑃7(0)]	 𝑒𝑞. 18 

If for example, a user has an ini4al state,  

𝑠=(0) = 	 [0 0 1 0]	 𝑒𝑞. 19 

this user has 100% probability of being in state 2 (ac4ve). Moreover, any other subsequent 𝑠=(𝑡) is 
calculated using the formula below,       

𝑠=(𝑡) = 	 𝑠=(𝑡 − 1)	×	𝑇>	 𝑒𝑞. 20 

By u4lizing the above formula, we populate a 24 by 4 probability matrix that represents a whole day. The 
user will be required to enter a 4me range in which they want to serve as a charging point. Thus, 
decreasing the itera4ons of our algorithm and serving them a customized result. Per say, a user wants to 
par4cipate from 9 am to 6 pm, then the 24 by 4 probability matrix will be reduce as shown below. 

g
𝑃3(0) ⋯ 𝑃7(0)
⋮ ⋱ ⋮

𝑃3(23) ⋯ 𝑃7(23)
k → 	 g

𝑃3(9) ⋯ 𝑃7(9)
⋮ ⋱ ⋮

𝑃3(17) ⋯ 𝑃7(17)
k 	 𝑒𝑞. 21 

Once we find a matrix within our 4me constraints, we calculate the probability of all users within the 
same household being all-absent, all-inac4ve, at least one user being ac4ve and one user being hyper-
ac4ve.  

𝑃𝑎𝑙𝑙−𝑎𝑏𝑠𝑒𝑛𝑡 = 	, 𝑃0𝑢(𝑡)
𝑢∈𝑈

	 𝑒𝑞. 22 

𝑃𝑎𝑙𝑙−𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = 	, 𝑃1𝑢(𝑡)
𝑢∈𝑈

	 𝑒𝑞. 23 

𝑃1+𝑎𝑐𝑡𝑖𝑣𝑒 = 	1 −	, 1 − 𝑃2𝑢(𝑡)
𝑢∈𝑈

	 𝑒𝑞. 24 
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𝑃1+ℎ𝑦𝑝𝑒𝑟𝑎𝑐𝑡𝑖𝑣𝑒 = 	1 −, 1 − 𝑃3𝑢(𝑡)
𝑢∈𝑈

	 𝑒𝑞. 25 

Where, 𝑈 is the set of all users within a household and 𝑢 is a certain user within that set.  

The joint probabili4es described above can be expanded in the following manner:  

𝑃-RRS-'TU1V =	𝑃3"(𝑡) × 𝑃3#(𝑡)…× 𝑃31(𝑡)	 𝑒𝑞. 26 

𝑃-RRS41-&V4/U =	𝑃""(𝑡) × 𝑃##(𝑡)…× 𝑃71(𝑡) 𝑒𝑞. 27 

𝑃"W-&V4/U = 1 − op1 − 𝑃#"(𝑡)q × (1 − 𝑃##(𝑡)r…× (1 − 𝑃#1(𝑡))] 𝑒𝑞. 28 

𝑃"W-&V4/U = 1 − op1 − 𝑃7"(𝑡)q × (1 − 𝑃7#(𝑡)r…× (1 − 𝑃71(𝑡))] 𝑒𝑞. 29 

Where 𝑛 represents the total number of users in the household.  

At the end of this process, the resul4ng matrix will contain: 

s
𝑃-RRS-'TU1V(V4,U!"#$") 𝑃-RRS41-&V4/U(V4,U!"#$") 𝑃"W-&V4/U(V4,U!"#$") 𝑃"WZ[\U]-&V4/U(V4,U!"#$")

⋮ ⋮ ⋮ ⋮
𝑃-RRS-'TU1V(V4,U%&') 𝑃-RRS41-&V4/U(V4,U%&') 𝑃"W-&V4/U(V4,U%&') 𝑃"WZ[\U]-&V4/U(V4,U%&')

t 	𝑒𝑞. 30 

This consump4on probability matrix represents the whole household. For every 4me period in this 
matrix the sum of the first two columns is calculated, 

𝑃𝑎𝑙𝑙−𝑎𝑏𝑠𝑒𝑛𝑡 +		𝑃𝑎𝑙𝑙−𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒	 𝑒𝑞. 31 

This is the value used to determine which 4me is best suited for charging, given the selected 4me period 
by the user. The best 4me to charge is represented by the maximum value provided by the equa4on 
described above.  

Algorithm Implementa*on 
In Appendix B we provide the flow chart for the Markov chain-based model that was described above. 
The algorithm was wrihen in C++ but can be implemented in any language of choice. Addi4onally, we 
have included two op4ons for the homeowner; a less personalized approach defined as ‘default’ and a 
more customized approach by making use of their smart meter to gather live data. Furthermore, the 
homeowner is asked to select the day that represents their typical consump4on ac4vity if they select the 
smart meter op4on. The ‘default’ route branches off into the calcula4on of cut-off values for states 
based on the empirical data obtained in our surveys.    

3.4 Data Set Determina3on 

Our study presents an analysis of data from a survey meant to analyze user behavior to construct two 
dis4nct algorithms, from which 26 people par4cipated that own a fossil fuel or hybrid vehicles or electric 
vehicles. Par4cipants were residents of New York City and the Westchester area, as well as Con Edison Inc. 
customers. The survey was intended to learn how people make decisions based on ra4ngs and how they 
use their appliances at home. In addi4on to this, we gathered market prices for different charging sta4ons, 
EVs state of charge informa4on, and electricity rate from Con Edison customers.  
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Survey Data 

Our survey included 26 par4cipants, 22 of whom drove fossil fuel or hybrid vehicles and 4 of whom drove 
electric vehicles. The survey was done in two different sec4ons, and each of them had dis4nct ques4ons 
for our algorithms.  

Pricing algorithm 

For our pricing algorithm, variable V ques4ons in survey included: what their vehicle’s bahery capacity or 
fuel tank size is, the cost of charging or refueling, and the loca4ons where they charge the EVs or the type 
of gasoline they use. For the distance and ra4ngs needed into the algorithm, par4cipants were ques4oned 
on how far they would go for different discounts, and how much would they pay for different average stars 
ra4ngs in gas/charging sta4ons.  

The pricing algorithm required addi4onal data, such as at what SoC EVs are at when they approach a 
charging sta4on, market price of charging sta4ons, and Con Edison electricity rates. For our Con Edison 
data, we gathered electricity bills from 14 different people in districts zip codes and averaged them out for 
our algorithm. We focused on zip codes that were geographically close to each other to concentrate our 
study within a more compact area. We specifically chose zip codes 10463, 10461, 10471, 10468, 10467, 
10470, 10469, and 10470 as our primary targets to gather data on the market prices of different charging 
sta4ons. Addi4onally, zip code 10701 in Yonkers was also included because of its proximity to 10471 and 
10463. Two EV charging apps were u4lized to gather the market prices: PlugShare and ChargePoint.  

Loca5on algorithm 

 For our loca4on algorithm, the survey delved into par4cipants usage paherns of home appliances and 
categorized their ac4vi4es into four dis4nct scenarios: absent (state 0), inac4ve (state 1), ac4ve (state 2), 
and hyperac4ve (state 3). Par4cipants were required to indicate the 4me periods they associated with 
each scenario over a 24-hour period to reflect their typical daily consump4on. The ques4ons asked 
par4cipants included: what appliances they own, at what 4mes they feel they are the most absent, 
inac4ve, ac4ve, or hyperac4ve, and at what 4me they are willing to open their home charger to other EV 
users. This last ques4on being a more scenario ques4on due to our limita4on of actual EVs users in our 
survey.  

Furthermore, we then collected data on when par4cipants transi4oned between these states and 
calculated their energy consump4on in kilowah-hours (kWh) for each state. They were also asked to 
specify the appliances they used in each state. We averaged the kWh usage for three different commercial 
brands for these appliances to establish default secngs for our app, allowing users to opt for these instead 
of personalized secngs. Moreover, we averaged out the state data from each par4cipant to determine 
our app's default secngs for each state.  

In addi4on, a smart meter was installed in a par4cipant's home to monitor their energy consump4on over 
a week. This data was organized from lowest to highest consump4on and then divided into quar4les, with 
state 0 represen4ng 0% to 25%, state 1 from 25% to 75%, state 2 from 75% to 90%, and state 3 from 90% 
to 100%. U4lizing a smart meter connec4on provides a more personalized and accurate defini4on of states 
for the user. The survey also inquired about par4cipants' willingness to allow other EV users to access their 
home chargers, a hypothe4cal scenario for most respondents.  
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Fig. 1. Map of zip codes in The Bronx 

 

4 Case Study  

4.1 Overview  

The following sec4on contains a case study along with a walkthrough of the applica4on from an EV owner’s 
perspec4ve and a homeowner’s perspec4ve. If the user’s intent is to allow their charger to be used by 
others, the set-up of the applica4on will be different than for a driver looking for a charger. It is important 
to emphasize that the account types are not mutually exclusive, as a home charger owner could also u4lize 
the app to find a charger for their EV, and vice versa.  

Case Study  
In this case study, we examine the case of Leslie Perez who is looking for a home charger while driving 
around the vicinity of29 Bayley Ave, Yonkers, NY. Leslie drives a Tesla Model Y vehicle. She is looking to 
charge for 1 hour while she finishes her run at Van Cortland Park. When she opens the ChargeBNB app, 
she sees mul4ple op4ons available for charging. On the app she sees a map with an average ra4ng of 4.70-
stars for the nearby chargers. The 4me is 7 AM. She makes her selec4on based on a $1.36 price found for 
a charger on 4505 Delafield Ave, The Bronx, NY. 

On the other hand, James Winston has listed his charger at 4505 Delafield Ave, The Bronx, NY on 
ChargeBNB, a 10-minute drive from the EV owner. James has selected a personalized default set up in the 
app, and entered the appliances which he uses with the corresponding 4mes. James has also entered the 
4mes at which his charger is available, 7AM-3PM. He currently has a ra4ng of 4.82 stars. 

The rest of sec4on 4 contains a walkthrough depic4on and descrip4on of the ChargeBNB features and 
interface for the homeowner and for the EV owner when they open it up for the first 4me, and in the case 
of this event. 
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4.2 Profile Crea3on  

 
Fig. 2. EV owner Ini4al profile crea4on 

 
Fig. 3. EVSE owner Ini4al profile crea4on 

Users deciding to use our mobile applica4on are EV and/ or EVSE owners. When first crea4ng their 
profile, they will not need to make a dis4nc4on regarding how they will use the applica4on. This is to 
allow quick and easy account crea4on without losing customers due to inconvenience. In Figures 2 and 
3, both the EV owner (Leslie Perez) and the EVSE owner (James Winston) both complete their profile 
with the same user demographic informa4on. 

Once a user decides to list their EVSE on the applica4on, the profile setup deviates. The EVSE owner 
walkthrough is discussed next. 

EVSE Owner Walkthrough 
A user who decides to list their EVSE on the applica4on will click on the buhon as indicated in Figure 4, 
and proceede to the EVSE owner setup by selec4ng their loca4on on the map in Figure 5. 
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Fig. 4. James decides to list his EVSE 

 
Fig. 5. Address selec4on on the map 

Once the address is selected on the map, the EVSE owner can proceed to secng up the details for their 
EVSE loca4on. The setup menu can be seen in Figure 6.  

The EVSE plug and network type are setup by clicking Charger on the EVSE setup menu. The values for 
each can be selected and updated as needed. This step can be seen in Figure 7. 

The EVSE loca4on descrip4on is input by selec4ng Descrip4on on the EVSE setup menu. The descrip4on 
of the EVSE lets po4enl EV owners coming to charge know how to access the EVSE, and if there are any 
addi4onal informa4on regarding usage. This step can be seen in Figure 8. 

Finally the ameni4es available at and near the EVSE loca4on can be selected on by click on Ameni4es on 
the EVSE setup menu. Addi4onal escort func4ons can be created to beher adjust pricing based on EV 
owners’ preference for various ameni4es. This step can be seen in Figure 9. 

The Survey and Availability setup are described in the Survey Walkthrough in Sec4on 4.3. 
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Fig. 6. EVSE Setup Menu 

 

 
Fig. 7. EVSE Charger setup screen 

 

 
Fig. 8. EVSE Descrip4on setup screen 

 
 

 
Fig. 9. EVSE Ameni4es setup screen 

EV Owner Walkthrough 
A user who decides to use ChargeBnB for EV charging needs to set up their EV on their profile. They can 
do this by clicking ‘Chose your EV’ as seen in Figure 10. 
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This takes the user to Add Vehicle screen where they can click ‘Add Vehicle’ to begin selec4ng the make 
and model of their EV. This is seen in Figure 11. 

The EV manufacturer is first selected as seen in Figure 12. This then takes the user to a menu of models 
provided by the manufacturer, where they can select the model of their EV as seen in Figure 13. 

Once selected their EV manufacturer and model are shown. The user can go back to make changes or 
select ‘Add Vehicle’ to update their profile with the new EV informa4on. This is seen in Figures 14 and 
15. 

 
Fig. 10 EV owner selects EV model 

 
 

 
Fig. 12 Select the EV Manufacturer 

 

 
Fig. 11. Add vehicle screen 
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Fig. 13 Select the EV Model 

 
 

 
Fig. 15. Profile update with vehicle 

 

 
Fig. 14. Add the vehicle to profile 

 
 
 

4.3 User Surveys  

EV Owner Walkthrough  
A user that wishes to enroll in our mobile applica4on must need to let us know if they are an EV owner or 
a homeowner with a charging sta4on. For a detailed walk-through, ‘EV user’ will be showcase first. The 
user will be asked a series of ques4ons to determine pricing informa4on. If the user already has an 
account, they will select “Yes, I already have an account” and then proceed to select “Homeowner” as 
illustrated in Fig. 16.  
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Fig. 15. User selects account informa4on   Fig. 16. User selec4on enrollment   
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Fig. 17. EV user charging cost      Fig. 18. EV user fully charged vehicle cost 

 

The following ques4ons asked to the EV owner are a series of ques4ons to understand their bahery 
capacity and how much they usually pay for their vehicle.  
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Fig 19. EV user’s battery size                   Fig. 20. EV user charging location 

                                                               

                Fig. 21. EV user habits                         Fig. 22. EV user willingness for 20% discount 
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Fig. 23. EV user willingness for 15% discount          Fig. 24. EV user willingness for 10% discount 

 

Fig. 25. EV user willingness for 5% discount 
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Homeowner Walkthrough 
A user that wishes to sign up as a homeowner to provide a home charger will have the following 
ques4ons for our loca4on algorithm.   

                                          

Fig. 26. User selects account informa4on   Fig. 27. User selec4on enrollment   

 

Once the user selects, they are a homeowner, they will select they would like to personalize their secngs. 
They will proceed to select appliances from an image we set up in the mobile applica4on. In addi4on to 
that, they will be able to input any other appliances as seen in Fig. 30. 
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Fig. 28. User selec4on for secngs                       Fig. 29. User appliances selec4on 

      

                                      

Fig. 30.  Users enter extra appliances   Fig. 31. User hyperac4ve use 
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          Fig. 32. User ac4ve use                Fig. 33. User inac4ve use 

  

 

                      

                                           Fig. 34. User absent use          Fig. 35. User charger openings 
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Users will have the opportunity to enter the 4mes where they considered to be in different states as seen 
in Fig.32-34. Then, Fig. 35 shows when they enter the 4me, they are willing to open their home changer to 
the public. 

4.4 EV Owner User Flow  

From a user whose purpose is to charge their vehicle through ChargeBnB they will navigate to a few 
screens making their selec4ons as to loca4on preferences and then choosing the most convenient 
charging point withing the map containing different loca4ons, prices and availability status. 

 

                       

 Fig. 36. asking user for privacy secngs.     Fig. 37. displaying charges in the area. 
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Fig. 38. Point of charge chosen by Leslie       Fig. 39. Unavailable loca4on on the map 
 

   

Fig.40. Payment method chose by EV-owner    
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As we see in fig. 39 there is a chance that a charging point is not available based on the Probability 
matrix recommenda4on to the homeowner, since their personal power usage may be rela4vely high at 
that 4me, thus unable to serve as a charging point. 

4.5 EV Charger Owner User Flow  

The EV charger owner’s flow consists of the no4fica4ons received from the app, and the corresponding 
screens on ChargeBNB. The no4fica4ons include alerts for when somebody wants to use their charger, 
when someone wants to send them an inbox message, along with updates on the charging status of any 
vehicle owner using their charger. 
 

                             

Fig. 41. No5fica5ons for EV Charger Owner                    Fig. 42. EV Charger Owner Profile Screen 

 

When James selects the ‘Someone wants to Charge’ no4fica4on, he will transi4on to his profile in the 
app (Fig. 42). Under the request sec4on, he can accept or decline any pending requests to use his 
charger. 
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Fig. 43. EVSE Owner’s Charging Status Update              

 
Fig. 44. EV Charger Owner’s Inbox 

 

 
Fig. 45. EV Charger Owner’s Hos4ng History 

 

Any of the charging update no4fica4ons will bring James to a screen that provides the live status of the 
charging session (Fig. 43). James is provided with a transac4on number as well as the 4me lel on the 
charging session. The new message no4fica4on will bring James to his inbox where he can view any 
messages from ChargeBnB, as well as from other users (Fig. 44). 

James also can view his hos4ng history and is presented with the name and date of the charging session 
and the dura4on and total price that the session cost. 
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5 Results and Discussion  

5.1 Loca3on Analysis  

From the case study presented, this sec4on will analyze the results that preceded the determina4on of 
the availability of James’ household.  

 

Figure 46: James State Cut-Off Values 

In Fig. 46, we can see the state cut-off values that we determined from the averages of our survey 
responses. Since James chose to set up his account using default values, these are the cut-offs that will 
be applied for his inputs in the ques4onnaire to determine his next state. These values could either be 
representa4ve of his actual data consump4on or not. This is the risk assumed by users when choose to 
use the default secngs that we have pre-determined. 

 
Figure 47: James’ State Matrix 

In Fig. 47, we can visualize James’ state matrix, determined by the cut-offs and his input of appliance 
usage for different hours of the day. Every index in this matrix represents an hour of his typical day. We 
observe that James’ is consistently in an inac4ve state for most of the day, un4l 6 PM when he jumps to a 
hyperac4ve state. 

 
Figure 48: James’ Household Transi4on Matrix 

The transi4on matrix derived for James’ case, found in figure 48, is simple to understand, as his rows for 
state 0 (row 1) and for state 2 (row 3), contain zeros across. This occurs because from his state matrix, 0 
and 2 states do not make an appearance. This simplifies the calcula4on of the transi4on for these states. 

The first row of the probability matrix found in Fig. 49 contains the ini4al state of James’ household, 
which is 1 (from the state matrix). This means that there is 100% probability of James being at state 1. 
The subsequent rows of this matrix, which pertain to each hour of the day, are calculated as described in 
the methodology sec4on of the loca4on algorithm. No4ceably, as expected, the probabili4es of being at 
state 0 and 2 in this case, are 0 all around. 
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Figure 49: James’ Household Probability Matrix 

 
Fig. 50. Algorithm request for availability 4me 

    
Figure 51: James’ Consump4on Matrix 

Given that James’ input for availability were the 4mes 7AM-3PM, this consump4on matrix in Fig. 51 is a 
subset of the probability matrix in Fig. 49, corresponding to James’ desired hours of availability. 

 
Figure 52: Loca4on algorithm final determina4on/output 
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The final determina4on of a 4me sugges4on for James is found on figure 52 to be 7AM. Looking at the 
consump4on matrix to understand how this determina4on is reached. We can observe that 7AM, being 
the first row of the matrix, has the highest probability of James being either in state 0 or state 1. 

5.2 Price Analysis  

Using the case study in Sec4on 4, the following results were determined for the EV charging using the 
EEGD pricing algorithm discussed in sec4on 3.3. 

Inputs obtained from the ChargeBnB applica*on 
The inputs for the pricing are obtained from the user details provided in the applica4on. When the user 
opens the map to locate a charger the GPS determines the users distance from each charger, and 
es4mates the 4me to arrive. The ra4ng for the loca4on being assessed is also provided from the 
applica4on. A ra4ng and price average is calculated based on the charging sta4ons in the area. Based on 
the EV make and model and es4mated SoC, an energy value is calculated.  

• 4me = 10 minutes   | The 4me needed to reach the assessed EVSE loca4on  
• ra4ng = 4.82   | The ra4ng of the EVSE loca4on being assessed  
• R_avg = 4.7   | The average ra4ng of nearby EVSE loca4ons 
• E = 30.8    | The energy needed to charge the Tesla Model Y 
• �̂� = 1.315   | The average market price of nearby public charging sta4ons 

Data calculated based on inputs 
From the inputs provided the following data is calculated to facilitate the crea4on of the ini4al state 
matricies and determine the escort func4ons used. 

• p_max = $1.3605/ kWh  | Using equa4on 3  
• p_min = $0.9205/kWh  | Using equa4on 4 
• 𝜑! = 0.1799ln(x) + 0.6171 | From Table 1, time = 10 
• 𝜓! = 1.026   | Using equa4on 8 

Prices calculated based on inputs: 
The ini4al state vector for the supply and demand prices are created with the strategies ranging from 
p_min to p_max, and the popula4on propor4on (0.0222) equally split between all strategies as seen in 
Figure 52.    

 
Fig, 52.  Ini4al state matrix for both EV and EVSE strategies
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Fig. 53. Evolu4on of prices and popula4on  

Aler each evolu4on of the algorithm, the state vector changes. The popula4on propor4on associated 
with each prices is adjusted to by both the payoff func4on and the associated escort func4on. The 
changes in states for the EVSE owner can be seen in Figure 53. 

TABLE 3: PRICES AND ASSOCIATED POPULATION PERCENTAGES 
Price EVSE % Pop EV % Pop 
0.9205 0.00% 29.11% 

0.9305 0.00% 20.85% 

0.9405 0.00% 14.56% 

0.9505 0.00% 9.86% 

0.9605 0.00% 6.44% 

0.9705 0.00% 6.18% 

0.9805 0.00% 4.52% 

0.9905 0.00% 3.44% 

1.0005 0.00% 2.77% 

1.0105 0.00% 2.40% 

1.0205 0.00% 2.22% 

1.3005 0.00% 2.17% 

1.3105 0.00% 2.16% 

1.3205 1.17% 2.16% 

1.3305 5.67% 2.16% 

1.3405 14.37% 2.16% 

1.3505 28.66% 2.16% 

1.3605 50.13% 2.16% 
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The prices determined by the EEGD algorithm can be seen in Table 3. The ini4al popula4on distribu4on 
for both EV and EVSE owners was 2.22% across all prices.  

The table shows that for the EV owner the most preferred price is $0.9205/kWh at 29.11%. With the 
next price of $0.9305/kWh at 20.085%. For the EV owner, the distribu4on for the prices remains higher 
than the ini4al value up to $1.0205/kWh which has a distribu4on equal to the ini4al value. At that point, 
the distribu4on levels off at 2.16% for the remaining prices.  

The distribu4on does not decrease to 0% for the higher prices due to the escort func4on accoun4ng for 
the market prices, and adjus4ng EV owner strategy results based on the nearby market prices. 

The table shows that the EVSE owner popula4on distribu4on is 0% for all prices below $1.3105/ kWh, 
and is the maximum level of 50.13% for the maximum price of $1.3605/ kWh. The EVSE owner was not 
incen4vized to lower his price as his charging sta4on had a higher than average user ra4ng. 

Therefore, the price chosen to present to the EV owner on the ChargeBnB applica4on in the case study is 
$1.3605/ kWh. As all prices where both the EV and EVSE owners have a non zero popula4on 
distribu4on, the EV owner has the same distribu4on of 2.16%. If there are no prices that have a 
popula4on distribu4on > 0% for both users, then the lowest EVSE price will be used. 

5.3 Data Analysis  
Our collected data concluded that 84% of our par4cipants had fossil fuel or a hybrid vehicle while 16% 
owned an electric vehicle.  

 
Figure 1. Par4cipant vehicle types 

Our Con Edison electricity rate for The Bronx was gathered from 14 different par4cipants to averaged out 
the tariff that is usually paid by customers. Table 3 illustrates the amount paid for the billing period from 
October to November, the kWh they used for the billing period, the total rate and in what zip code in The 
Bronx they are located. Our average rate was set to be 0.4575 cents per kWh.  

To calculate the total rate, we used formula #: 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒  =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑝𝑎𝑖𝑑

𝑘𝑊ℎ 	 𝑒𝑞. 32 

For the average rate, we performed formula #: 
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𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑎𝑣𝑒𝑟𝑎𝑔𝑒  =
1
𝑁
}𝑅𝑎𝑡𝑒.

^

.2"

	 𝑒𝑞. 33 

• N: total number of customers 
• X: user number 
• 𝑅𝑎𝑡𝑒.: rate for user x 

TABLE 3. CON EDISON ELECTRICITY RATES FOR THE BRONX 
User Amount Paid kWh Total Rate Zip code 

1 154.12 458 0.33650655 10451 
2 96.99 261 0.371609195 10452 
3 190.98 510 0.374470588 10453 
4 416.31 1165 0.357347639 10454 
5 49.33 83 0.594337349 10457 
6 50.21 92 0.54576087 10458 
7 114.69 287 0.399616725 10458 
8 72.13 157 0.459426752 10460 
9 41.89 63 0.664920635 10461 

10 76.53 157 0.487452229 10463 
11 94.61 264 0.358371212 10463 
12 121.77 294 0.414183673 10465 
13 181.39 498 0.364236948 10468 
14 128.07 380 0.337026316 10469 

Furthermore, we computed the State of Charge (SoC) for the top 10 electric vehicle models as listed by 
[20]. These specific models were selected for their demand in the market, being among the highest-selling 
EVs in 2022, and represen4ng a diverse array of models. Table 4 depicts the list of cars. For our study we 
selected the SoC when the vehicle is at home. 

TABLE 4. ELECTRIC VEHICLE MODELS   

       % SoC   

User Model BaOery Capacity kWh Home Workplace Public Charger 

1 Tesla Model Y - RWD 60 24.60 28.68 23.46 
2 Tesla Model 3 - RWD 50 20.50 23.90 19.55 

3 Ford Mustang Mach-E - 
RWD 68 27.88 32.50 26.59 

4 Chevy Bolt EV/EUV 65 26.65 31.07 25.42 

5 Tesla Model S - RWD 85 34.85 40.63 33.24 
6 Tesla Model X - 90D 100 41.00 47.80 39.10 

7 Hyundai Ioniq5 - SE 
Standard 58 23.78 27.72 22.68 

8 VW ID.4 - RWD 58 23.78 27.72 22.68 

9 Kia EV6 - RWD 58 23.78 27.72 22.68 

10 Rivian R1T - AWD 
Standard 105 43.05 50.19 41.06 

Average     28.99 33.79 27.64 



37 
 

Furthermore, the market prices for 37 charging sta4ons located in proximity to Riverdale were computed 
and averaged out to be 1.3242. (See Appendix A for table) 

6 Conclusion  

In our research paper, we introduce ChargeBnB, a novel mobile applica4on designed to facilitate EV 
charging by connec4ng EV owners with residen4al EVSE owners. ChargeBnB provides users with the 
price and loca4on of available chargers, connec4ng users who need to charge their EV with owners of EV 
charging equipment.  

In order accomplish this a dynamic pricing algorithm using escort evolu4onary game dynamics is used to 
present a customized price to the user based on their specific data such as loca4on, car type, and ra4ng 
of the charging loca4on. Addi4onally, a Markov chain-based stochas4c algorithm was used to determine 
the op4mal 4me for EVSE owners to allow EV charging, thus upda4ng the loca4on of available chargers 
dynamically. Empirical data informs our algorithmic assump4ons.  

Our case study demonstrates that EV and EVSE owners can conveniently arrange charging sessions 
through the app at mutually agreed prices, 4mes, and loca4ons. The app adapts to user needs and 
preferences, with ongoing data collec4on through user survyes, enhancing algorithm accuracy for 4me 
and price recommenda4ons.  

Future improvements include incorpora4ng machine learning for increased accuracy, addi4onal features, 
and an enhanced user experience. 
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Appendix A 
Table #. Market price for charging sta4ons 

No. Price (kWh) Name Loca<on Note 

1 

0.25 (12 am to 8 am) 

NYC FLEET/DPR_VCP-S2 10471 1 charger 0.30 ( 8 am to 10 pm) 

0.25 (10 pm to 12 am) 

2 0.23 SKYVIEW APARTME / 
SKYVIEW ST2 10471 

2 Chargers / Difficult to find 
(reviews) 

3 0.23 SKYVIEW APARTME / 
SKYVIEW ST1 10471 

2 Chargers / Difficult to find 
(reviews) 

4 
0.25 (12 am to 8 am) 

NYC FLEET / DPR_VCP-S1 10471 1 charger 0.30 ( 8 am to 10 pm) 
0.25 (10 pm to 12 am) 

5 0.5 Briar Oaks 10463 

Idle fee of $10 per hour, one 
review says good for level 2, 
another one says  could not 

find chargers 

6 

AUA-10311:  6 am to 9 pm : 
$2.50/hr n 9 pm to 6 am : $1/hr 

Bronx Van Cortlandt 
Village 10468 4 sta-ons 

AUA-10296: 6 am to 9 pm : 
$2.50/hr n 9 pm to 6 am : $1/hr 

AUA-10328: 6 am to 9 pm : 
$2.50/hr n 9 pm to 6 am : $1/hr 

AUA-10322: 6 am to 9 pm : 
$2.50/hr n 9 pm to 6 am : $1/hr 

 7 

AUA-10300: 6 am to 9 pm : 
$2.50/hr and 9 pm to 6 am : 

$1/hr Dekalb Ave 
Parking/Charging 10467 2 sta-ons 

AUA-10283: 6 am to 9 pm : 
$2.50/hr and 9 pm to 6 am : 

$1/hr 

https://driver.chargepoint.com/stations/7980041
https://driver.chargepoint.com/stations/5600361
https://driver.chargepoint.com/stations/5600231
https://driver.chargepoint.com/stations/7980111
https://www.plugshare.com/location/495443
https://www.plugshare.com/location/346243
https://www.plugshare.com/location/334654
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8 

AUA-10290: 6 am to 9 pm : 
$2.50/hr and 9 pm to 6 am : 

$1/hr Putnam Pl 
Parking/Charging  10467 2 sta-ons 

AUA-10293: 6 am to 9 pm : 
$2.50/hr and 9 pm to 6 am : 

$1/hr 

9 $4.00/session, -me limit 8 h New York Botanical 
Garden - Parking Garage 10458 

1 sta-on, 2 plugs / $17 parking 
Tues-Friday, and $20 Satur-

Monday  

10 

AUB-19082: $3.00 (USD) per 
hour for first 1 hour(s) 

 and $10.00 (USD) per hour 
ajer 1 hour(s) 

Popeyes 10469 6 sta-ons 

AUB-19098: $3.00 (USD) per 
hour 

AUB-19111: $3.00 (USD) per 
hour  

AUB-19121: $3.00 (USD) per 
hour  

AUB-19122: $3.00 (USD) per 
hour  

AUB-19120: $3.00 (USD) per 
hour  

11 
12:00 AM-5:59 AM - $2/kWh 

Key Food Supermarket 10461 1 sta-on   6:00 AM-9:59 PM - $1/kWh 
10:00 PM-11:59 PM - $2/kWh 

12 0.46 Northeast Bronx YMCA 10466 
Proximate to 10467 - 4 

sta-ons, has some bad reviews 

13 

0.35/kWh + While charging: 
2.00/hr (ajer 9:00 PM) + While 

charging: 2.00/hr (12:00 AM-
6:00 AM) + While parked, not 

charging: 25.00/hr ajer 45 
mins (7:00 AM-11:55 PM) 

Yonkers Police 
Department 10705 Proximate to 10471 

14 $2.00 (USD) per hour Warburton Garage 10701 
11 Sta-ons - Proximate to 

10471 
 

  

https://www.plugshare.com/location/324873
https://www.plugshare.com/location/7703
https://www.plugshare.com/location/483405
https://www.plugshare.com/location/60675
https://www.plugshare.com/location/359924
https://www.plugshare.com/location/520509
https://www.plugshare.com/location/484749
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Appendix B 
Loca3on Algorithm Flow Chart 
 

 




